Galaxies. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Galaxies - Группа авторов страница 19
The Illustris project (Vogelsberger et al. 2014) is one of the most comprehensive simulational surveys of galaxies ever made. The project takes advantage of advances in simulation programming, storage space and computing power, and includes as many physical processes as relevant, such as feedback due to AGN, supernovae, and supermassive black holes, mass and internal dynamics of dark and baryonic matter and the efficacies of star formation, to produce synthetic galaxies at such a realistic level that, once converted into observational units, can match the morphology of many SDSS galaxies. An expert morphologist would be able to examine these artificial galaxies and classify many within the Hubble tuning fork or in some other manner. Snyder et al. (2015) show using non-parametric measures of galaxy morphology that Illustris synthetic galaxies approximate z≈0 galaxies well enough to match the correlation between star formation and galaxy morphology. A great advantage of the project is the ability of the survey to show how different synthetic galaxies evolve under the conditions of the models. For example, followed to high redshifts, the Illustris models reproduce the observed characteristic that galaxies become more irregular at higher redshifts than at lower redshifts (Genel et al. 2014).
Like the SDSS, many of the new digital imaging surveys will provide detailed information on the morphologies of literally millions of galaxies over a wide range of redshift. The classifications of these galaxies are critical to cosmological studies of galaxy formation and evolution. While significant subsets of galaxies are and will continue to be classified visually by single or multiple experts, the vast majority of galaxies will have to be classified in other ways. The Galaxy Zoo project (Lintott et al. 2008) recognized that there will never be enough professional experts to classify hundreds of thousands of galaxies, and instead enlisted the volunteer assistance of tens of thousands of non-expert “citizen scientists” to classify galaxies in enough detail to be cosmologically useful. The Galaxy Zoo Team did not require that volunteers use the CVRHS system to classify galaxies, but instead allowed volunteers to select a few basic characteristics through the use of a small number of buttons in a web interface. How GZ2 classifications compare with some CVRHS classifications was shown in section 1.11. However, as effective as Galaxy Zoo has been for large-scale galaxy classification, there will still be hundreds of thousands or millions of galaxies that will need to be classified.
Dieleman et al. (2015) describe an effective method for automatic classification that uses deep learning with convolutional neural networks. The method inputs multifilter SDSS images of a large sample of galaxies having known morphological classifications. Domínguez Sánchez et al. (2019) use the crowd-sourced GZ2 classifications and the T-classifications of Nair and Abraham (2010) to obtain automatic classifications of 670,000 galaxies.
Many other aspects of galaxy morphology are worth examining; these are described in more detail in the review articles by Buta (2012, 2013).
1.14. References
Abbott, C.G., Valluri, M., Shen, J., et al. (2017). MNRAS, 470, 1526.
Aihara, H., et al. (2018). PASJ, 70, 84.
Ann, H.B., Seo, M., Ha, D.K. (2015). ApJS, 217, 27.
Appleton, P., Struck-Marcell, C. (1996). FCPh, 16, 111.
Athanassoula, E. (2016) In Galactic Bulges, Laurikainen, E., Peletier, R., Gadotti, D. (eds). ASSL, vol. 418. Springer International Publishing, Switzerland, p. 391.
Athanassoula, E., Rodonov, S.A., Peschke, N., et al. (2016). ApJ, 821, 90.
Baillard, A., Bertin, E., de Lapparent, V., et al. (2011). A&A, 532, 74.
Bertola, F., Galletta, G. (1978). ApJ, 226, L115.
Blum, R.D., et al. (2016). BAAS, 228, 317.
Bournaud, F., Combes, F. (2002). A & A, 392, 83.
Buta, R. (1995a). ApLC, 31, 109.
Buta, R. (1995b). ApJS, 96, 39.
Buta, R. (2012). Galaxy morphology. In Secular Evolution of Galaxies, Falcón-Barroso, J., Knapen, J.H. (eds). Cambridge University Press, Cambridge, 155.
Buta, R. (2013). Galaxy morphology. In Planets, Stars, & Stellar Systems, Vol. 6, Oswalt, T.D., Keel, W. C. (eds). Springer, Dordrecht, p. 1.
Buta, R. (2019). MNRAS, 488, 590.
Buta, R.,Verdes-Montenegro, L., Damas-Segovia, A., et al. (2019). MNRAS, 488, 2175.
Buta, R., Block, D.L. (2001). ApJ, 550, 243.
Buta, R., Combes, F. (1996). FCPh, 17, 95.
Buta, R., Crocker, D.A. (1991). AJ, 102, 1715.
Buta, R., Purcell, G.B. (1998). AJ, 115, 484.
Buta R., Williams K.L. (1995). AJ, 109, 543.
Buta, R., Zhang, X. (2009). ApJS, 182, 559.
Buta, R., Byrd, G.G., Freeman, T. (2004). AJ, 127, 1982.
Buta, R., Corwin, H.G., Odewahn, S.C. (2007). The de Vaucouleurs Atlas of Galaxies. Cambridge University Press, Cambridge.
Buta, R., Laurikainen, E., Salo, H., et al. (2010). ApJ, 721, 259.
Buta, R., Mitra, S., de Vaucouleurs, G., et al. (1994). AJ, 107, 118.
Buta, R., et al. (2015). ApJS, 217, 32.
Byrd, G.G., Rautiainen, P., Salo, H., et al. (1994). AJ, 108, 476.
Capaccioli, M. (1987). In The Structure and Dynamics of Elliptical Galaxies, de Zeeuw, T. (ed.). IAU Symposium 127, Reidel, Dordrecht, p. 47.
Cappellari, M., et al. (2011). MNRAS, 416, 1680.
Chilingarian, I.V., Di Matteo, P., Combes, F., et al. (2010). A&A, 518, A61.
Combes, F., Sanders, R.H. (1981). A&A, 96, 164.
Comerón, S., Knapen, J.H., Beckman, J.E., et al. (2010). MNRAS, 402, 2462.
Comerón, S., et al. (2014). A&A, 562, 121.
Crocker, D.A., Baugus, P.D., Buta, R. (1996).