Renewable Integrated Power System Stability and Control. Hassan Bevrani

Чтение книги онлайн.

Читать онлайн книгу Renewable Integrated Power System Stability and Control - Hassan Bevrani страница 14

Renewable Integrated Power System Stability and Control - Hassan Bevrani

Скачать книгу

systems from measured responses. IFAC Proceedings Volumes 45 (16): 989–1000.

      9 9. Eriksson, R. and Soder, L. (2011). Wide‐area measurement system‐based subspace identification for obtaining linear models to centrally coordinate controllable devices. IEEE Transactions on Power Delivery 26 (2): 988–997.

      10 10. Zhou, N., Lu, S., Singh, R., and Elizondo, M.A. (2011). Calibration of reduced dynamic models of power systems using phasor measurement unit (PMU) data. 2011 North American Power Symposium, Boston, MA (2011), pp. 1–7. doi: https://doi.org/10.1109/NAPS.2011.6024873.

      11 11. Zhang, J., Lu, C., and Han, Y. (2013). MIMO identification of power system with low level probing tests: applicability comparison of subspace methods. IEEE Transactions on Power Systems 28 (3): 2907–2917.

      12 12. Wiseman, B.P., Chen, Y., Xie, L., and Kumar, P. (2016). PMU‐based reduced‐order modeling of power system dynamics via selective modal analysis. In: 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), 1–5. IEEE.

      13 13. Liu, H., Zhu, L., Pan, Z. et al. (2016). Comparison of MIMO system identification methods for electromechanical oscillation damping estimation. 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA (2016), pp. 1–5. doi: https://doi.org/10.1109/PESGM.2016.7741834.

      14 14. Tuttelberg, K., Kilter, J., and Uhlen, K. (2017). Comparison of system identification methods applied to analysis of inter‐area modes. Proceedings of International Power Systems Transients Conference 2017, Seoul, South Korea (26–29 June 2017).

      15 15. Ghasemi, H. and Canizares, C.A. (2008). Confidence intervals estimation in the identification of electromechanical modes from ambient noise. IEEE Transactions on Power Systems 23 (2): 641–648.

      16 16. Dosiek, L., Pierre, J.W., and Follum, J. (2013). A recursive maximum likelihood estimator for the online estimation of electromechanical modes with error bounds. IEEE Transactions on Power Systems 28 (1): 441–451.

      17 17. Uhlen, K., Warland, L., Gjerde, J.O. et al. (2008). Monitoring amplitude, frequency and damping of power system oscillations with PMU measurements. 2008 IEEE Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA (2008), pp. 1–7, doi: https://doi.org/10.1109/PES.2008.4596661.

      18 18. Tripathy, P., Srivastava, S.C., and Singh, S.N. (2011). A modified TLS‐ESPRIT‐based method for low frequency mode identification in power systems utilizing synchrophasor measurements. IEEE Transactions on Power Systems 26 (2): 719–727.

      19 19. Rogers, K.M., Spadoni, R.D., and Overbye, T.J. (2011). Identification of power system topology from synchrophasor data. 2011 IEEE/PES Power Systems Conference and Exposition, Phoenix, AZ (2011), pp. 1–8, doi: https://doi.org/10.1109/PSCE.2011.5772462.

      20 20. Nabavi, S. and Chakrabortty, A. (2013). Topology identification for dynamic equivalent models of large power system networks. 2013 American Control Conference, Washington, DC, (2013), pp. 1138–1143. doi: https://doi.org/10.1109/ACC.2013.6579989.

      21 21. Wang, X., Bialek, J.W., and Turitsyn, K. (2018). PMU‐based estimation of dynamic state jacobian matrix and dynamic system state matrix in ambient conditions. IEEE Transactions on Power Systems 33 (1): 681–690.

      22 22. Tuttelberg, K., Kilter, J., Wilson, D., and Uhlen, K. (2018). Estimation of power system inertia from ambient wide area measurements. IEEE Transactions on Power Systems 33 (6): 7249–7257.

      23 23. Zeng, F., Zhang, J., Zhou, Y., and Qu, S. (2020). Online identification of inertia distribution in normal operating power system. IEEE Transactions on Power Systems 35 (4): 3301–3304. https://doi.org/10.1109/TPWRS.2020.2986721.

      24 24. Concordia, C. and Kirchmayer, L. (1953). Tie‐line power and frequency control of electric power systems [includes discussion]. Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems 72 (3): 562–572.

      25 25. System Controls Subcommittee of the Power System Engineering Committee of the IEEE Power Group (1970). IEEE standard definitions of terms for automatic generation control on electric power systems. IEEE Transactions on Power Apparatus and Systems PAS‐89 (6): 1356–1364.

      26 26. I. C. Report (1973). Dynamic models for steam and hydro turbines in power system studies. IEEE Transactions on Power Apparatus and Systems PAS‐92 (6): 1904–1915.

      27 27. Jaleeli, N., VanSlyck, L.S., Ewart, D.N. et al. (1992). Understanding automatic generation control. IEEE Transactions on Power Systems 7 (3): 1106–1122.

      28 28. Pathak, N., Bhatti, T.S., and Verma, A. (2017). Accurate modelling of discrete AGC controllers for interconnected power systems. IET Generation, Transmission & Distribution 11 (8): 2102–2114.

      29 29. Moawwad, A., El‐Saadany, E.F., and El Moursi, M.S. (2018). Dynamic security‐constrained automatic generation control (AGC) of integrated ac/dc power networks. IEEE Transactions on Power Systems 33 (4): 3875–3885.

      30 30. Ledva, G.S., Vrettos, E., Mastellone, S. et al. (2018). Managing communication delays and model error in demand response for frequency regulation. IEEE Transactions on Power Systems 33 (2): 1299–1308.

      31 31. Ibraheem, P., Kumar, and Kothari, D.P. (2005). Recent philosophies of automatic generation control strategies in power systems. IEEE Transactions on Power Systems 20 (1): 346–357.

      32 32. Bevrani, H. (2014). Robust Power System Frequency Control, 2e. Gewerbestrasse, Switzerland: Springer.

      33 33. Ulbig, A., Borsche, T.S., and Andersson, G. (2014). Impact of low rotational inertia on power system stability and operation. IFAC Proceedings Volumes 47 (3): 7290–7297.

      34 34. Jaleeli, N. and VanSlyck, L.S. (1999). NERC's new control performance standards. IEEE Transactions on Power Systems 14 (3): 1092–1099.

      35 35. Hain, Y., Kulessky, R., and Nudelman, G. (2000). Identification‐based power unit model for load‐frequency control purposes. IEEE Transactions on Power Systems 15 (4): 1313–1321.

      36 36. Chang‐Chien, L.R., Hoonchareon, N.‐B., Ong, C.‐M., and Kramer, R.A. (2003). Estimation of /spl beta/ for adaptive frequency bias setting in load frequency control. IEEE Transactions on Power Systems 18 (2): 904–911.

      37 37. Wilches‐Bernal, F., Concepcion, R., Neely, J.C. et al. (2018). Communication enabled fast acting imbalance reserve (CE‐FAIR). IEEE Transactions on Power Systems 33 (1): 1101–1103.

      38 38. Zhang, G. and McCalley, J.D. (2018). Estimation of regulation reserve requirement based on control performance standard. IEEE Transactions on Power Systems 33 (2): 1173–1183.

      39 39. Polajzer, B., Brezovnik, R., and Ritonja, J. (2017). Evaluation of load frequency control performance based on standard deviational ellipses. IEEE Transactions on Power Systems 32 (3): 2296–2304.

      40 40. Avila, T., Gutierrez, E., and Chavez, H. (2017). Performance standard‐compliant secondary control: the case of Chile. IEEE Latin America Transactions 15 (7): 1257–1262.

      41 41.

Скачать книгу