Polymer Nanocomposite Materials. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Polymer Nanocomposite Materials - Группа авторов страница 13

Polymer Nanocomposite Materials - Группа авторов

Скачать книгу

and multi-functional performance of epoxy/GNP-nanocomposites. J. Mater. Sci. 49: 6180–6190.

      91 91 Chandrasekaran, S., Sato, N., Tölle, F. et al. (2014). Fracture toughness and failure mechanism of graphene based epoxy composites. Compos. Sci. Technol. 97: 90–99.

      92 92 Li, Y., Zhang, H., Bilotti, E., and Peijs, T. (2016). Optimization of three-roll mill parameters for in-situ exfoliation of graphene. MRS Adv. 1: 1389–1394.

      93 93 Dalir, H., Farahani, R.D., Nhim, V. et al. (2012). Preparation of highly exfoliated polyester-clay nanocomposites: process-property correlations. Langmuir 28: 791–803.

      94 94 Park, J.-J. and Lee, J.-Y. (2013). Effect of nano-sized layered silicate on AC electrical treeing behavior of epoxy/layered silicate nanocomposite in needle-plate electrodes. Mater. Chem. Phys. 141: 776–780.

      95 95 Kothmann, M.H., Ziadeh, M., Bakis, G. et al. (2015). Analyzing the influence of particle size and stiffness state of the nanofiller on the mechanical properties of epoxy/clay nanocomposites using a novel shear-stiff nano-mica. J. Mater. Sci. 50: 4845–4859.

      96 96 Zhang, D.L. (2004). Processing of advanced materials using high-energy mechanical milling. Prog. Mater Sci. 49: 537–560.

      97 97 Gupta, T.K., Singh, B.P., Mathur, R.B., and Dhakate, S.R. (2014). Multi-walled carbon nanotube-graphene-polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness. Nanoscale 6: 842–851.

      98 98 Wu, H., Zhao, W., Hu, H., and Chen, G. (2011). One-step in situ ball milling synthesis of polymer-functionalized graphene nanocomposites. J. Mater. Chem. 21: 8626–8632.

      99 99 Jiang, X. and Drzal, L.T. (2012). Reduction in percolation threshold of injection molded high-density polyethylene/exfoliated graphene nanoplatelets composites by solid state ball milling and solid state shear pulverization. J. Appl. Polym. Sci. 124: 525–535.

      100 100 Tang, L.-C., Wan, Y.-J., Yan, D. et al. (2013). The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60: 16–27.

      101 101 Gu, J., Li, N., Tian, L. et al. (2015). High thermal conductivity graphite nanoplatelet/UHMWPE nanocomposites. RSC Adv. 5: 36334–36339.

      102 102 Castrillo, P.D., Olmos, D., Amador, D.R., and Gonzalez-Benito, J. (2007). Real dispersion of isolated fumed silica nanoparticles in highly filled PMMA prepared by high energy ball milling. J. Colloid Interface Sci. 308: 318–324.

      103 103 Donnay, M., Tzavalas, S., and Logakis, E. (2015). Boron nitride filled epoxy with improved thermal conductivity and dielectric breakdown strength. Compos. Sci. Technol. 110: 152–158.

      104 104 Gu, J., Guo, Y., Yang, X. et al. (2017). Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers. Compos. Part A: Appl. Sci. Manuf. 95: 267–273.

      105 105 Lin, Y. and Connell, J.W. (2012). Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale 4: 6908–6939.

      106 106 Yao, Y., Lin, Z., Li, Z. et al. (2012). Large-scale production of two-dimensional nanosheets. J. Mater. Chem. 22: 13494–13499.

      107 107 Lee, D., Lee, B., Park, K.H. et al. (2015). Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling. Nano Lett. 15: 1238–1244.

      108 108 Brent, J.R., Savjani, N., and O'Brien, P. (2017). Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets. Prog. Mater Sci. 89: 411–478.

      109 109 Buzaglo, M., Bar, I.P., Varenik, M. et al. (2017). Graphite-to-graphene: total conversion. Adv. Mater. 29: 1603528.

      110 110 Teng, C., Xie, D., Wang, J. et al. (2017). Ultrahigh conductive graphene raper based on ball-milling exfoliated graphene. Adv. Funct. Mater. 27: 1700240.

      111 111 Gu, J., Guo, Y., Lv, Z. et al. (2015). Highly thermally conductive POSS-g-SiCp/UHMWPE composites with excellent dielectric properties and thermal stabilities. Compos. Part A: Appl. Sci. Manuf. 78: 95–101.

      112 112 Gu, J., Xie, C., Li, H. et al. (2013). Thermal percolation behavior of graphene nanoplatelets/polyphenylene sulfide thermal conductivity composites. Polym. Compos. 35: 1087–1092.

      113 113 Wu, C.L., Zhang, M.Q., Rong, M.Z., and Friedrich, K. (2002). Tensile performance improvement of low nanoparticles filled-polypropylene composites. Compos. Sci. Technol. 62: 1327–1340.

      114 114 Fawaz, J. and Mittal, V. (2014). Synthesis of Polymer Nanocomposites: Review of Various Techniques. Wiley-VCH.

      115 115 Kim, I.-H. and Jeong, Y.G. (2010). Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. J. Polym. Sci., Part B: Polym. Phys. 48: 850–858.

      116 116 Villmow, T., Pötschke, P., Pegel, S. et al. (2008). Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer 49: 3500–3509.

      117 117 Zou, H., Wu, S., and Shen, J. (2008). Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem. Rev. 108: 3893–3957.

      118 118 Venugopal, G., Veetil, J.C., Raghavan, N. et al. (2016). Nano-dynamic mechanical and thermal responses of single-walled carbon nanotubes reinforced polymer nanocomposite thinfilms. J. Alloys Compd. 688: 454–459.

      119 119 Moniruzzaman, M., Du, F., Romero, N., and Winey, K.I. (2006). Increased flexural modulus and strength in SWNT/epoxy composites by a new fabrication method. Polymer 47: 293–298.

      120 120 Isayev, A.I., Kumar, R., and Lewis, T.M. (2009). Ultrasound assisted twin screw extrusion of polymer–nanocomposites containing carbon nanotubes. Polymer 50: 250–260.

      121 121 Hanemann, T. and Szabó, D.V. (2010). Polymer-nanoparticle composites: from synthesis to modern applications. Materials 3: 3468–3517.

      122 122 Caseri, W.R. (2013). Nanocomposites of polymers and inorganic particles: preparation, structure and properties. Mater. Sci. Technol. 22: 807–817.

      123 123 Xiong, M., Zhou, S., Wu, L. et al. (2004). Sol–gel derived organic–inorganic hybrid from trialkoxysilane-capped acrylic resin and titania: effects of preparation conditions on the structure and properties. Polymer 45: 8127–8138.

      124 124 Cao, Z., Jiang, W., Ye, X., and Gong, X. (2008). Preparation of superparamagnetic Fe3O4/PMMA nano composites and their magnetorheological characteristics. J. Magn. Magn. Mater. 320: 1499–1502.

      125 125 Vollath, D. and Szabó, D.V. (1999). Coated nanoparticles: a new way to improved nanocomposites. J. Nanopart. Res. 1: 235–242.

      2

      Fabrication of Conductive Polymer Composites and Their Applications in Sensors

       Jiefeng Gao

       Yangzhou University, School of Chemistry and Chemical Engineering, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China

      Compared

Скачать книгу