Electrical and Electronic Devices, Circuits, and Materials. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Electrical and Electronic Devices, Circuits, and Materials - Группа авторов страница 38

Electrical and Electronic Devices, Circuits, and Materials - Группа авторов

Скачать книгу

electrolytes: Ionic transport mechanisms and relaxation coupling. MRS Bull 25:31–37.

      21. Williams ML, Landel RF, Ferry JD (1955) The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids1. Temperature Dependence of Relaxation Mechanisms. J. Am. Chem. Soc 77:3701–370.

      22. Watanabe M, Ogata N (1988) Ionic conductivity of polymer electrolytes and future applications. Br polym journal 20:181-192, Baril D (1997) Electrochemistry of liquids vs. solids: Polymer electrolytes. Solid State Ionics 94:35–47.

      23. Sen, S., Jayappa, R. B., Zhu, H., Forsyth, M., & Bhattacharyya, A. J. (2016). A single cation or anion dendrimer-based liquid electrolyte. Chemical science, 7(5), 3390-3398.

      24. Mindemark, J., Lacey, M. J., Bowden, T., & Brandell, D. (2018). Beyond PEO—Alternative host materials for Li+-conducting solid polymer electrolytes. Progress in Polymer Science, 81, 114-143.

      25. Song, J. Y., Wang, Y. Y., & Wan, C. C. (1999). Review of gel-type polymer electrolytes for lithium-ion batteries. Journal of power sources, 77(2), 183-197.

      27. Long, L., Wang, S., Xiao, M., & Meng, Y. (2016). Polymer electrolytes for lithium polymer batteries. Journal of Materials Chemistry A, 4(26), 10038-10069.

      28. Arya, A., & Sharma, A. L. (2019). Electrolyte for energy storage/conversion (Li+, Na+, Mg 2+) devices based on PVC and their associated polymer: a comprehensive review. Journal of Solid State Electrochemistry, 23(4), 997-1059.

      29. Arya, A., & Sharma, A. L. (2020). Polymer Nanocomposites: synthesis and characterization. In Environmental Nanotechnology Volume 4 (pp. 265-315). Springer, Cham.

      30. Croce, F., Curini, R., Martinelli, A., Persi, L., Ronci, F., Scrosati, B., & Caminiti, R. (1999). Physical and chemical properties of nanocomposite polymer electrolytes. Journal of Physical Chemistry B, 103(48), 10632-10638.

      31. M. F. Lagadec, R. Zahn, V. Wood, Characterization and performance evaluation of lithium-ion battery separators. (2019). Nature Energy, 4:16-25.

      32. Pal, P., & Ghosh, A. (2018). Highly efficient gel polymer electrolytes for all solid-state electrochemical charge storage devices. Electrochimica Acta, 278, 137-148.

      33. A. Yu, I. Roes, A. Davies, Z. Chen, Ultrathin, transparent, and flexible graphene films for super-capacitor application, Appl. Phys. Lett. 96 (2010), 253105.

      34. G.A. Tiruye, D. Mu~noz-Torrero, J. Palma, M. Anderson, R. Marcilla, Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids, J. Power Sources 326 (2016) 560e568.

      35. Wang, H., Yi, H., Chen, X., & Wang, X. (2014). Asymmetric supercapacitors based on nano-architectured nickel oxide/graphene foam and hierarchical porous nitrogen-doped carbon nanotubes with ultrahigh-rate performance. Journal of Materials Chemistry A, 2(9), 3223-3230.

      36. Eilmes, A.; Kubisiak, P. A Quantum-Chemical Study On the Boron Centers in Nonaqueous Electrolyte Solutions and Polymer Electrolytes. Electrochim. Acta 2011, 56, 3219−3224.

      37. Du, H., Wu, Z., Xu, Y., Liu, S., & Yang, H. (2020). Poly (3, 4-ethylenedioxythiophene) Based Solid-State Polymer Supercapacitor with Ionic Liquid Gel Polymer Electrolyte. Polymers, 12(2), 297

      38. Wu, J.; Gong, X.L.; Fan, Y.C.; Xia, H.S. Physically Crosslinked Poly(vinyl alcohol) Hydrogels with Magnetic Field Controlled Modulus. Soft Matter 2011, 7, 6205–6212.

      39. Alexandre, S. A., Silva, G. G., Santamaría, R., Trigueiro, J. P. C., & Lavall, R. L. (2019). A highly adhesive PIL/IL gel polymer electrolyte for use in flexible solid state supercapacitors. Electrochimica Acta, 299, 789-799.

      40. Wang, F., Wu, X., Yuan, X., Liu, Z., Zhang, Y., Fu, L., ... & Huang, W. (2017). Latest advances in supercapacitors: from new electrode materials to novel device designs. Chemical Society Reviews, 46(22), 6816-6854.

      41. Yan, C., Jin, M., Pan, X., Ma, L., & Ma, X. (2020). A flexible polyelectrolyte-based gel polymer electrolyte for high-performance all-solid-state supercapacitor application. RSC Advances, 10(16), 9299-9308.

      42. Senthilkumar, S. T., Selvan, R. K., Ponpandian, N., & Melo, J. S. (2012). Redox additive aqueous polymer gel electrolyte for an electric double layer capacitor. RSC advances, 2(24), 8937-8940.

      43. Yadav, N., Yadav, N., Singh, M. K., & Hashmi, S. A. (2019). Nonaqueous, Redox-Active Gel Polymer Electrolyte for High-Performance Supercapacitor. Energy Technology, 7(9), 1900132.

      44. Peng, X., Liu, H., Yin, Q., Wu, J., Chen, P., Zhang, G., ... & Xie, Y. (2016). A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nature communications, 7, 11782.

      45. Lu, C., & Chen, X. (2019). In situ synthesized PEO/NBR composite ionogels for high-performance all-solid-state supercapacitors. Chemical Communications, 55(58), 8470-8473.

      47. Das, S., & Ghosh, A. (2020). Symmetric electric double-layer capacitor containing imidazolium ionic liquid-based solid polymer electrolyte: Effect of TiO2 and ZnO nanoparticles on electrochemical behavior. Journal of Applied Polymer Science, 137(22), 48757.

      48. Pal, P., & Ghosh, A. (2018). Solid-state gel polymer electrolytes based on ionic liquids containing imidazolium cations and tetrafluoroborate anions for electrochemical double layer capacitors: Influence of cations size and viscosity of ionic liquids. Journal of Power Sources, 406, 128-140.

      49. Choi, Y. J., Jung, D. S., Han, J. H., Lee, G. W., Wang, S. E., Kim, Y. H., ... & Kim, K. B. (2019). Nanofiber Cellulose-Incorporated Nanomesh Graphene–Carbon Nanotube Buckypaper and Ionic Liquid-Based Solid Polymer Electrolyte for Flexible Supercapacitors. Energy Technology, 7(5), 1900014.

      50. Jin, J., Mu, H., Wang, W., Li, X., Cheng, Q., & Wang, G. (2019). Long-life flexible supercapacitors based on nitrogen-doped porous graphene@ π-conjugated polymer film electrodes and porous quasi-solid-state polymer electrolyte. Electrochimica Acta, 317, 250-260.

      51. Pal, B., Yang, S., Ramesh, S., Thangadurai, V., & Jose, R. (2019). Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Advances, 1(10), 3807-3835.

      52. Kang, D. A., Kim, K., Karade, S. S., Kim, H., & Kim, J. H. (2020). High-performance solid-state bendable supercapacitors based on PEGBEM-g-PAEMA graft copolymer electrolyte. Chemical Engineering Journal, 384, 123308.

      53. Sudhakar, Y. N., & Selvakumar, M. (2012). Lithium perchlorate doped plasticized chitosan and starch blend as biodegradable polymer electrolyte for supercapacitors. Electrochimica acta, 78, 398-405.

      54. Tiruye, G. A., Munoz-Torrero, D., Palma, J., Anderson, M., & Marcilla, R. (2015). All-solid state supercapacitors operating at 3.5 V by using ionic liquid based

Скачать книгу