Applied Univariate, Bivariate, and Multivariate Statistics. Daniel J. Denis

Чтение книги онлайн.

Читать онлайн книгу Applied Univariate, Bivariate, and Multivariate Statistics - Daniel J. Denis страница 44

Applied Univariate, Bivariate, and Multivariate Statistics - Daniel J. Denis

Скачать книгу

under the condition of minimal power could either mean a lack of inferential support for the obtained finding, or it could simply suggest an underpowered (and consequently poorly designed) experiment or study. Ensuring adequate statistical power before one engages in a research study or experiment is mandatory (Cohen, 1988).

      To demonstrate the estimation of power using software, we first use pwr.r.test (Champely, 2014) in R to estimate required sample size for a Pearson r correlation coefficient. As an example, we estimate required sample size for a population correlation coefficient of ρ = 0.10 at a significance level set to 0.05, with desired power equal to 0.90. Note that in the code that follows, we purposely leave n empty so R can estimate this figure for us:

      Source: Bollen (1989). Reproduced with permission from John Wiley & Sons, Inc.

      We see that to detect a correlation coefficient of 0.10 at a desired level of power equal to 0.9, a sample size of 1046 is required. We could round up to 1047 for a slightly more conservative estimate. It is a more conservative estimate because 1047 is slightly more “generous” of a sample than R is reporting is necessary (1046). Now, in this case, the difference is extremely slight, but in general, when you provide your analysis with more subjects than what may be necessary for a given level of power, you are guarding against the possibility of obtaining smaller effects than what you believe are “out there” in your population. If in doubt, larger samples are always preferable to smaller ones, and thus rounding “up” on sample size requirements is usually a good idea.

Graph depicts G asterisk Power output for estimating required sample size for r = 0.10. Graph depicts power curves generated by G asterisk Power for detecting correlation coefficients of row = 0.10 to 0.50.

      Hence, one general observation from this simple power analysis for detecting ρ is that size of effect (in this case, ρ) plays a very important role in determining estimated sample size. As a general rule, across virtually all statistical tests, if the effect you are studying is large, a much smaller sample size is required than if the effect is weak. Drawing on our analogy of the billboard sign that reads “H0 is false,” all else equal, if the sign is in large print (i.e., strong effect), you require less “power” in your prescription glasses to detect such a large sign. If the sign is in small print (i.e., weak effect), you require much more “power” in your lenses to detect it.

      2.22.1 Estimating Sample Size and Power for Independent Samples t‐Test

      For an independent‐samples t‐test, required sample size can be estimated through R using pwr.t.test :

      > pwr.t.test (n =, d =, sig.level =, power =, type = c(“two.sample”, “one.sample”, “paired”))

      where, n = sample size per group, d = estimate of standardized statistical distance between means (Cohen's d), sig.level = desired significance level of the test, power = desired power level, and type = designation of the kind of t‐test you are performing (for our example, we are performing a two‐sample test).

Exact – Correlation: Bivariate Normal Model Tail(s) = Two, Correlation ρ H0 = 0, α err prob = 0.05
Correlation ρ H1 = 0.1 Correlation ρ H1 = 0.2 Correlation p HI = 0.3 Correlation ρ HI = 0.4 Correlation ρ HI = 0.5
# Power(1‐β err prob) Total Sample Size Total Sample Size Total Sample Size Total Sample Size Total Sample Size
1 0.600000 488.500 121.500 53.5000 29.5000

Скачать книгу