Systematics and the Exploration of Life. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Systematics and the Exploration of Life - Группа авторов страница 11

Systematics and the Exploration of Life - Группа авторов

Скачать книгу

involved in multiple aspects of the evolution of flowering plants, and morphometrics allows the statistical testing of adaptive hypotheses. For example, in Erysimum mediohispanicum, Gómez and Perfectti (2010) have shown the impact of the shape of the corolla (and its deviation from the expected symmetry) on the selective value of the plant: pollinators (bees, bombyliids) significantly prefer flowers with bilaterally symmetric corollas (zygomorphism).

      Measures of fluctuating asymmetry are also used to infer patterns of developmental integration, in other words, the modular organization of phenotypes resulting from differential interactions between developmental processes (Klingenberg 2008).

      Savriama et al. (2016) quantified the fluctuating “translational” asymmetry in order to assess the developmental cost of segmented modular organization in eight species of soil centipedes (Geophilomorpha). The results did not show any impact of the degree of modularity (number of segments) on developmental precision, rejecting the hypothesis of a “cost” of modularity.

      Finally, the architecture of some organisms or organic structures may combine several hierarchically arranged patterns of symmetry. This is, for example, the case for Aristotle’s lantern, the masticatory apparatus of sea urchins, which, in regular sea urchins, combines bilateral and rotational symmetries (Savriama and Gerber 2018). The lantern exhibits the fifth-order rotational symmetry that is typical of echinoderms, and results from the repetition of a composite skeletal unit (hemipyramids + epiphyses) with bilateral symmetry. Analysis of the symmetric architecture of the lantern revealed a torsion (directional asymmetry) of the hemipyramids, contributing to the functioning of the lantern, and patterns of fluctuating asymmetry reflecting the spatialization of the skeletal precursors during the morphogenesis of the lantern.

      Adams, D.C., Rohlf, F.J., and Slice, D.E. (2004). Geometric morphometrics: Ten years of progress following the “revolution”. Italian Journal of Zoology, 71, 5–16.

      Arthur, W. (2006). D’Arcy Thompson and the theory of transformations. Nature Reviews Genetics, 7, 401–406.

      Bookstein, F.L. (1978). The Measurement of Biological Shape and Shape Change. Springer, New York.

      Bookstein, F.L. (1989). Principal warps: Thin-plate splines and the decomposition of deformation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 567–585.

      Bookstein, F.L. (1991). Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge.

      Bookstein, F.L. (1996). Biometrics, biomathematics and the morphometric synthesis. Bulletin of Mathematical Biology, 58, 313–365.

      Briscoe, J. and Kicheva, A. (2017). The physics of development 100 years after D’Arcy Thompson’s “On Growth and Form”. Mechanisms of Development, 145, 26–31.

      Chaplain, M.A.J., Singh, G.D., and McLachlan, J.C. (1999). On Growth and Form: Spatio-temporal Pattern Formation in Biology. John Wiley & Sons, New York.

      Citerne, H., Jabbour, F., Nadot, S., and Damerval, C. (2010). The evolution of floral symmetry. Advances in Botanical Research, 54, 85–137.

      Coxeter, H.S.M. (1969). Introduction to Geometry. John Wiley & Sons, New York.

      Dryden, I.L. and Mardia, K.V. (1998). Statistical Shape Analysis. John Wiley & Sons, New York.

      Gómez, J.M. and Perfectti, F. (2010). Evolution of complex traits: The case of Erysimum corolla shape. International Journal of Plant Sciences, 171, 987–998.

      Gould, S.J. (1971). D’Arcy Thompson and the science of form. New Literary History, 2, 229–258.

      Graham, J.H., Freeman, D.C., and Emlen, J.M. (1993). Antisymmetry, directional asymmetry, and dynamic morphogenesis. Genetica, 89, 121–137.

      Haeckel, E. (1904). Kunstformen der Natur. Bibliographischen Instituts, Leipzig.

      Keller, E.F. (2018). Physics in biology – Has D’Arcy Thompson been vindicated? The Mathematical Intelligencer, 40, 33–38.

      Kendall, D.G. (1984). Shape manifolds, procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society, 16, 81–121.

      Klingenberg, C.P. (2008). Morphological integration and developmental modularity. Annual Review of Ecology, Evolution, and Systematics, 39, 115–132.

      Klingenberg, C.P. (2015). Analyzing fluctuating asymmetry with geometric morphometrics: Concepts, methods, and applications. Symmetry, 7, 843–934.

      Klingenberg, C.P. and McIntyre, G.S. (1998). Geometric morphometrics of developmental instability: Analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution, 52, 1363–1375.

      Klingenberg, C.P., Barluenga, M., and Meyer, A. (2002). Shape analysis of symmetric structures: Quantifying variation among individuals and asymmetry. Evolution, 56, 1909–1920.

      Kolamunnage, R. and Kent, J.T. (2003). Principal component analysis for shape variation about an underlying symmetric shape. In Stochastic Geometry, Biological Structure and Images, Aykroyd, R.G., Mardia, K.V., and Langdon, M.J. (eds). Leeds University Press, Leeds, 137–139.

      Kolamunnage, R. and Kent, J.T. (2005). Decomposing departures from bilateral symmetry. In Quantitative Biology, Shape Analysis, and Wavelets, Barber, S., Baxter, P.D., Mardia, K.V., and Walls, R.E. (eds). Leeds University Press, Leeds, 75–78.

      Leamy, L. (1984). Morphometric studies in inbred and hybrid house mice. V. Directional and fluctuating asymmetry. The American Naturalist, 123, 579–593.

      Leamy, L., Klingenberg, C., Sherratt, E., Wolf, J., and

Скачать книгу