Diarylethene Molecular Photoswitches. Masahiro Irie

Чтение книги онлайн.

Читать онлайн книгу Diarylethene Molecular Photoswitches - Masahiro Irie страница 7

Автор:
Жанр:
Серия:
Издательство:
Diarylethene Molecular Photoswitches - Masahiro Irie

Скачать книгу

undergo photoswitching reactions even in the crystalline phase. In this book, the discovery and development of diarylethenes are described comprehensively from the basic concepts to their applications.

      I wish to express my deep appreciation to my colleagues, Prof. M. Morimoto, Prof. S. Kobatake, Prof. K. Matsuda, Prof. T. Fukaminato, Prof. K. Uchida, Prof. T. Kawai, Prof. T. Tsujioka, and Dr. K. Uno for their kind help and support to prepare the manuscript. Finally, I also express my thanks to my family, Setsuko, Fumi, and Hisafumi for their continual encouragement to complete this book.

      December 2020

      Masahiro Irie

      1.1 General Introduction

      Photoisomerization is one of the fundamental reactions in photochemistry [1–3]. Trans–cis isomerization, sigmatropic rearrangements, and electrocyclic rearrangements are typical examples. Molecules capable of these reversible photoisomerization reactions are called photochromic molecules or molecular photoswitches [4–10]. The two isomers differ from each other not only in their absorption and fluorescence spectra but also in their geometrical structures, oxidation/reduction potentials, refractive indices, and dielectric constants.

Chemical reaction depicts molecular photoswitches and years when they were discovered.

      The two lower molecules, furylfulgide [19] and diarylethene [20–22], undergo P‐type (thermally irreversible but photochemically reversible) photoswitching reactions. In the P‐type molecular photoswitches, photogenerated right‐side colored isomers are thermally stable and practically never return to the right‐side colorless isomers in the dark at room temperature. Although many molecular photoswitches have been so far reported, P‐type chromophores are very rare. The families, furylfulgides and diarylethenes, are two such rare examples exhibiting P‐type reactivity. The primary difference between furylfulgides and diarylethenes is fatigue resistance. Photoinduced coloration/decoloration cycles of well‐designed diarylethene derivatives can be repeated more than 104 times maintaining adequate photoswitching ability (see Section 3.3), whereas in most cases the corresponding cycles of furylfulgides are limited to less than 102 times.

      The instant property changes of photoswitchable molecules by photoirradiation without any additional process lead to their use in various photoresponsive materials and photonic devices. When the bistable molecules are incorporated into materials, the electronic structure changes can be applied to optical memory media and conductance photoswitches, while the geometrical structure changes can be applied to light‐driven actuators and others. Molecular photoswitches used in such applications are required to fulfill following properties.

      1 Thermal stability of both isomers

      2 Fatigue‐resistance

      3 High sensitivity

      4 Rapid response

      5 Reactivity in the solid state.

      1 Both isomers are thermally stable: half‐life times at room temperature are as long as 470 000 years at 30 °C.

      2 Photoinduced coloration/decoloration can be repeated for more than 104 cycles.

      3 The quantum yield of cyclization (coloration) reaction is close to 1 (100%).

      4 Response times of both coloration and decoloration reactions are less than 20 ps.

      5 Many of diarylethene derivatives undergo photoswitching even in the single crystalline phase.

Скачать книгу