The Handbook of Speech Perception. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу The Handbook of Speech Perception - Группа авторов страница 72

The Handbook of Speech Perception - Группа авторов

Скачать книгу

distributions. Presumably, acoustic inputs that are infrequently produced would require more processing and neural resources compared to acoustic inputs that are in the center of a category or that match more closely a word representation. As such, both processing and neural resources would be freed up when more frequent features and lexical items occur, and additional resources would be needed for less frequent occurrences. In this way, the system is not only flexible but also plastic, affording a means for the basic stable structure of speech to be shaped and influenced by experience.

      1 Andruski, J. E., Blumstein, S. E., & Burton, M. (1994). The effect of subphonetic differences on lexical access. Cognition, 52(3), 163–187.

      2 Apfelbaum, K. S., Blumstein, S. E., & McMurray, B. (2011). Semantic priming is affected by real‐time phonological competition: Evidence for continuous cascading systems. Psychonomic Bulletin & Review, 18(1), 141–149.

      3 Arsenault, J. S., & Buchsbaum, B. R. (2015). Distributed neural representations of phonological features during speech perception. Journal of Neuroscience, 35(2), 634–642.

      4 Bailey, T. M., & Hahn, U. (2005). Phoneme similarity and confusability. Journal of Memory and Language, 52(3), 339–362.

      5 Blumstein, S. E., Baker, E., & Goodglass, H. (1977). Phonological factors in auditory comprehension in aphasia. Neuropsychologia, 15(1), 19–30.

      6 Blumstein, S., & Cooper, W. (1972). Identification versus discrimination of distinctive features in speech perception. Quarterly Journal of Experimental Psychology, 24(2), 207–214.

      7 Blumstein, S. E., Myers, E. B., & Rissman, J. (2005). The perception of voice onset time: An fMRI investigation of phonetic category structure. Journal of Cognitive Neuroscience, 17(9), 1353–1366.

      8 Blumstein, S. E., & Stevens, K. N. (1979). Acoustic invariance in speech production: Evidence from measurements of the spectral characteristics of stop consonants. Journal of the Acoustical Society of America, 66(4), 1001–1017.

      9 Blumstein, S. E., & Stevens, K. N. (1980). Perceptual invariance and onset spectra for stop consonants in different vowel environments. Journal of the Acoustical Society of America, 67(2), 648–662.

      10 Blumstein, S. E., & Stevens, K. N. (1981). Phonetic features and acoustic invariance in speech. Cognition, 10(1), 25–32.

      11 Carney, A. E., Widin, G. P., & Viemeister, N. F. (1977). Noncategorical perception of stop consonants differing in VOT. Journal of the Acoustical Society of America, 62(4), 961–970.

      12 Chang, S., & Blumstein, S. E. (1981). The role of onsets in perception of stop place of articulation: Effects of spectral and temporal discontinuity. Journal of the Acoustical Society of America, 70(1), 39–44.

      13 Cheung, C., Hamilton, L. S., Johnson, K., & Chang, E. F. (2016). The auditory representation of speech sounds in human motor cortex. eLife, 5, e12577.

      14 Connine, C. M., Blasko, D. G., & Titone, D. (1993). Do the beginnings of spoken words have a special status in auditory word recognition? Journal of Memory and Language, 32(2), 193–210.

      15 Cooper, Franklin S. (1955). Some instrumental aids to research on speech. In Report of the Fourth Annual Round Table Meeting on Linguistics and Language Teaching (pp. 46–53). Washington, DC: Institute of Languages and Linguistics, Georgetown University.

      16 Correia, J. M., Jansma, B. M. B., & Bonte, M. (2015). Decoding articulatory features from fMRI responses in dorsal speech regions. Journal of Neuroscience, 35(45), 15015–15025.

      17  D’Ausilio, A., Craighero, L., & Fadiga, L. (2012). The contribution of the frontal lobe to the perception of speech. Journal of Neurolinguistics, 25(5), 328–335.

      18 Fadiga, L., Craighero, L., Buccino, G., & Rizzolatti, G. (2002). Speech listening specifically modulates the excitability of tongue muscles: A TMS study. European Journal of Neuroscience, 15, 399–402.

      19 Fowler, C. A. (1986). An event approach to the study of speech perception from a direct‐realist perspective. Journal of Phonetics, 14(1), 3–28.

      20 Fowler, C. A., Shankweiler, D., & Studdert‐Kennedy, M. (2016). Perception of the speech code revisited: Speech is alphabetic after all. Psychological Review, 123(2), 125–150.

      21 Frye, R. E., Fisher, J. M., Coty, A., et al. (2007). Linear coding of voice onset time. Journal of Cognitive Neuroscience, 19(9), 1476–1487.

      22 Galantucci, B., Fowler, C. A., & Turvey, M. T. (2006). The motor theory of speech perception reviewed. Psychonomic Bulletin & Review, 13(3), 361–377.

      23 Gaskell, M. G., & Marslen‐Wilson, W. D. (1999). Ambiguity, competition, and blending in spoken word recognition. Cognitive Science, 23, 439–462.

      24 Gerken, L., Murphy, W. D., & Aslin, R. N. (1995). Three‐and four‐year‐olds’ perceptual confusions for spoken words. Attention, Perception, & Psychophysics, 57(4), 475–486.

      25 Goldinger, S. D. (1998). Echoes of echoes? An episodic theory of lexical access. Psychological Review, 105(2), 251–279.

      26 Goldinger, S. D., Luce, P. A., & Pisoni, D. B. (1989). Priming lexical neighbors of spoken words: Effects of competition and inhibition. Journal of Memory and Language, 28, 501–518.

      27 Greenberg, J. H., & Jenkins, J. J. (1964). Studies in the psychological correlates of the sound system of American English. Word, 20(2), 157–177.

      28 Guediche, S., Minicucci, D., Shih, P., & Blumstein, S. E. (2018). The neural system is sensitive to abstract properties of speech. Unpublished paper.

      29 Guenther, F. H., Nieto‐Castanon, A., Ghosh, S. S., & Tourville, J. A. (2004). Representation of sound categories in auditory cortical maps. Journal of Speech, Language, and Hearing Research, 47(1), 46–57.

      30 Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8(5), 393–402.

      31 Iverson, P., & Kuhl, P. K. (1996). Influences of phonetic identification and category goodness on American listeners’ perception of/r/and/l/. Journal of the Acoustical Society of America, 99(2), 1130–1140.

      32 Jakobson, R., Fant, C. G., & Halle, M. (1951). Preliminaries to speech analysis: The distinctive features and their correlates. Cambridge, MA: MIT Press.

      33 Joanisse, M. F., Zevin, J. D., & McCandliss, B. D. (2007). Brain mechanisms implicated in the preattentive categorization of speech sounds revealed using fMRI and a short‐interval habituation trial paradigm. Cerebral Cortex, 17(9), 2084–2093.

      34 Johnson, A. A., Reidy, P. F., & Edwards, J. R. (2018). Quantifying robustness of the/t/–/k/contrast using a single, static spectral feature. Journal of the Acoustical Society of America, 144(2), EL105–111.

      35 Kewley‐Port, D. (1983). Time‐varying features as correlates of place of articulation in stop consonants. Journal of the Acoustical Society of America, 73(1), 322–335.

      36 Koenig, W., Dunn, H. K., & Lacy, L. Y. (1946). The sound spectrograph. Journal of the Acoustical Society of America, 17, 19–49.

      37 Kurowski, K., & Blumstein, S. E. (1984). Perceptual integration of the murmur and formant transitions for place of articulation

Скачать книгу