Space Physics and Aeronomy, Solar Physics and Solar Wind. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Space Physics and Aeronomy, Solar Physics and Solar Wind - Группа авторов страница 23

Space Physics and Aeronomy, Solar Physics and Solar Wind - Группа авторов

Скачать книгу

models of solar wind ions and elections and their interaction with plasma waves, but also direction comparison of the data with kinetic model results will be possible. Additionally, because together Solar Orbiter and the Parker Solar Probe will cover such a wide range of solar distances, it will be possible to study (a) the radial evolution of plasma turbulence in the expanding solar wind, (b) temperature anisotropy evolution for different particle species, and (c) to distinguish whether power‐law suprathermal tails are formed due to local turbulent processes in the solar wind or have their origin in the solar corona. Similarly, we will be able to investigate the nature of the formation of in situ mesoscale structures, weighing the importance of turbulent processing or magnetic reconnection that occurs during transit against time‐dynamic magnetic reconnection in the corona or stationary coronal streamer substructure.

      Despite the many unanswered questions surrounding the formation and propagation of the solar wind, it is obvious that heliophysics is poised on the threshold of an exciting era of discovery.

      OA is supported by the French Centre National d’Etude Spatiales (CNES). VP and CV thank ISSI for the project on kappa distributions. APR, YU, BL, RP, and ML acknowledge support from the French space agency (Centre National des Etudes Spatiales; CNES; https://cnes.fr/fr) that funds activity in plasma physics data center (Centre de Données de la Physique des Plasmas; CDPP; http://cdpp.eu/) and the Multi Experiment Data & Operation Center (MEDOC; https://idoc.ias.u‐psud.fr/MEDOC), and the space weather team in Toulouse (Solar‐Terrestrial Observations and Modelling Service; STORMS; http://storms‐service.irap.omp.eu/). This includes funding for the data mining tools AMDA (http://amda.cdpp.eu/), CLWEB (clweb.cesr.fr/), and the propagation tool (http://propagationtool.cdpp.eu). APR, YW, BL, RP, and ML also acknowledge financial support from ERC for the project SLOW_SOURCE ‐ DLV‐819189 as well as ANR project COROSHOCK No ANR − 18 − ERC1 − 0006 − 01.

      1 Abbo, L., Antonucci, E., Mikić, Z. et al. (2010, December). Characterization of the slow wind in the outer corona. Advances in Space Research 46: 1400–1408. https://doi.org/10.1016/j.asr.2010.08.008.

      2 Aellig, M.R., Lazarus, A.J., and Steinberg, J.T. (2001). The solar wind helium abundance: Variation with wind speed and the solar cycle. Geophysical Research Letters 28: 2767–2770. https://doi.org/10.1029/2000GL012771.

      3 Alexandrova, O. (2008, February). Solar wind vs magnetosheath turbulence and Alfvén vortices. Nonlinear Processes in Geophysics 15: 95–108.

      4 Alexandrova, O., Carbone, V., Veltri, P., and Sorriso‐Valvo, L. (2008, February). Small‐scale energy cascade of the solar wind turbulence. The Astrophysical Journal 674: 1153–1157. https://doi.org/10.1086/524056.

      5 Alexandrova, O., Chen, C.H.K., Sorriso‐Valvo, L. et al. (2013, October). Solar wind turbulence and the role of ion instabilities. Space Science Reviews 178: 101–139. https://doi.org/10.1007/s11214‐013‐0004‐8.

      6 Alexandrova, O., Lacombe, C., Mangeney, A. et al. (2012, December). Solar wind turbulent spectrum at plasma kinetic scales. The Astrophysical Journal 760: 121. https://doi.org/10.1088/0004‐637X/760/2/121.

      7 Alexandrova, O., Saur, J., Lacombe, C. et al. (2009, October). Universality of solar‐wind turbulent spectrum from MHD to electron scales. Physical Review Letters 103 (16): 165003. https://doi.org/10.1103/PhysRevLett.103.165003.

      8 Antiochos, S.K., DeVore, C.R., Karpen, J.T., and Mikić, Z. (2007, December). Structure and dynamics of the sun’s open magnetic field. The Astrophysical Journal 671: 936–946. https://doi.org/10.1086/522489.

      9 Antiochos, S.K., Mikić, Z., Titov, V.S. et al. (2011, April). A model for the sources of the slow solar wind. The Astrophysical Journal 731: 112. https://doi.org/10.1088/0004‐637X/731/2/112.

      10 Antonucci, E., Andretta, V., Cesare, S., Ciaravella, A., Doschek, G., Fineschi, S., et al. (2017, November). METIS, the Multi Element Telescope for Imaging and Spectroscopy: an instrument proposed for the solar orbiter mission. In Society of photo‐optical instrumentation engineers (spie) conference series (Vol. 10566, p. 105660L). doi: https://doi.org/10.1117/12.2308225.

      11 Antonucci, E., Dodero, M.A., and Giordano, S. (2000, November). Fast solar wind velocity in a polar coronal hole during solar minimum. Solar Physics 197: 115–134. https://doi.org/10.1023/A:1026568912809.

      12 Bavassano, B., Dobrowolny, M., Fanfoni, G. et al. (1982, June). Statistical properties of MHD fluctuations associated with high‐speed streams from Helios‐2 observations. Solar Physics 78: 373–384. https://doi.org/10.1007/BF00151617.

      13 Bavassano, B., Dobrowolny, M., Mariani, F., and Ness, N.F. (1982, May). Radial evolution of power spectra of interplanetary Alfvenic turbulence. Journal of Geophysical Research 87: 3617–3622.

      14 Bavassano, B., Pietropaolo, E., & Bruno, R. (2004, February). Compressive fluctuations in high‐latitude solar wind. Annales Geophysicae, 22, 689–696. doi: 10 .5194/angeo‐22‐689‐2004

      15 Belcher, J.W. and Davis, L. Jr. (1971). Large‐amplitude waves in the interplanetary medium, 2. Journal of Geophysical Research Atmospheres 76: 3534–3563.

      16 Bemporad, A. (2017, September). Exploring the inner acceleration region of solar wind: A study based on coronagraphic UV and visible light data. The Astrophysical Journal 846: 86. https://doi.org/10.3847/1538‐4357/aa7de4.

      17 Biermann, L. (1951). Kometenschweife und solare Korpuskularstrahlung. Zeitschrift für Astrophysik 29: 274.

      18 Birkeland, K. (1908). The Norwegian aurora polaris expedition, 1902–1903, Vol. I, Section 1, H Aschehoug, Oslo.

      19 Bø, I.M.T., Esser, R., and Lie‐Svendsen, Ø. (2013, May). Effect of Coulomb collisions on the gravitational settling of low and high first ionization potential elements. The Astrophysical Journal 769: 60. https://doi.org/10.1088/0004‐637X/769/1/60.

      20 Borovsky, J.E. (2008, August). Flux tube texture of the solar wind: Strands of the magnetic carpet at 1 AU? Journal of Geophysical Research: Space Physics 113: A08110. https://doi.org/10.1029/2007JA012684.

      21 Borovsky, J.E. (2010, September). On the variations of the solar wind magnetic field

Скачать книгу