Computational Methods in Organometallic Catalysis. Yu Lan
Чтение книги онлайн.
Читать онлайн книгу Computational Methods in Organometallic Catalysis - Yu Lan страница 33
84 84 Schäfer, A., Horn, H., Ahlrichs, R. et al. (1992). Fully optimized contracted Gaussian basis sets for atoms Li to Kr. Journal of Chemical Physics 97: 2571.
85 85 Schäfer, A., Horn, H., Ahlrichs, R. et al. (1994). Fully optimized contracted Gaussian basis sets of triple zeta valence. Journal of Chemical Physics 100: 5829.
86 86 Hättig, C. (2005). Optimization of auxiliary basis sets for RI‐MP2 and RI‐CC2 calculations: core–valence and quintuple‐ζ basis sets for H to Ar and QZVPP basis sets for Li to Kr. Physical Chemistry Chemical Physics 7: 59–66.
87 87 Hellweg, A., Hättig, C., Höfener, S. et al. (2007). Optimized accurate auxiliary basis sets for RI‐MP2 and RI‐CC2 calculations for the atoms Rb to Rn. Theoretical Chemistry Accounts 117: 587–597.
88 88 Tomasi, J., Mennucci, B., Cammi, R. et al. (2005). Quantum mechanical continuum solvation models. Chemical Reviews 105: 2999–3093.
89 89 Tomasi, J., Mennucci, B., Cancès, E. et al. (1999). The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. Journal of Molecular Structure THEOCHEM 464: 211–226.
90 90 Cossi, M., Rega, N., Scalmani, G. et al. (2003). Energies, structures, and electronic properties of molecules in solution with the C‐PCM solvation model. Journal of Computational Chemistry 24: 669–681.
91 91 Barone, V. and Cossi, M. (1998). Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. Journal of Physical Chemistry A 102: 1995–2001.
92 92 Foresman, J.B., Keith, T.A., Wiberg, K.B. et al. (1996). Solvent effects 5. The influence of cavity shape, truncation of electrostatics, and electron correlation on ab initio reaction field calculations. Journal of Physical Chemistry 100: 16098–16104.
93 93 Marenich, A.V., Cramer, C.J., Truhlar, D.G. et al. (2009). Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Journal of Physical Chemistry B 113: 6378–6396.
94 94 Chai, J.D. and Head‐Gordon, M. (2008). Long‐range corrected hybrid density functionals with damped atom–atom dispersion corrections. Physical Chemistry Chemical Physics 10: 6615–6620.
95 95 Chai, J.D. and Head‐Gordon, M. (2008). Systematic optimization of long‐range corrected hybrid density functionals. Journal of Chemical Physics 128: 084106.
96 96 Frisch, M.J., Trucks, G.W., Schlegel, H.B. et al. (2010). Gaussian 09. Wallingford, CT: Gaussian.
97 97 Velde, G., Bickelhaupt, F.M., Baerends, E.J. et al. (2001). Chemistry with ADF. Journal of Computational Chemistry 22: 931.
98 98 Neese, F. (2012). The ORCA program system. Wiley Interdisciplinary Reviews: Computational Molecular Science 2: 73–78.
99 99 Barca, G.M.J., Bertoni, C., Carrington, L. et al. (2020). Recent developments in the general atomic and molecular electronic structure system. Journal of Chemical Physics 152: 154102.
100 100 Werner, H.‐J., Knowles, P.J., Knizia, G. et al. (2012). Molpro: a general‐purpose quantum chemistry program package. Wiley Interdisciplinary Reviews: Computational Molecular Science 2: 242–253.
101 101 Aquilante, F., Autschbach, J., Carlson, R.K. et al. (2016). MOLCAS 8: new capabilities for multiconfigurational quantum chemical calculations across the periodic table. Journal of Computational Chemistry 37: 506–541.
102 102 Shao, Y., Gan, Z., and Epifanovsky, E. (2015). Advances in molecular quantum chemistry contained in the Q‐Chem 4 program package. Molecular Physics 113: 184–215.
103 103 Valiev, M., Bylaska, E.J., and Govind, N. (2010). NWChem: a comprehensive and scalable open‐source solution for large scale molecular simulations. Computer Physics Communications 181: 1477.
104 104 Dam, H.J.J., Jong, W.A., and Bylaska, E. (2011). NWChem: scalable parallel computational chemistry. Wiley Interdisciplinary Reviews: Computational Molecular Science 1: 888–894.
105 105 Balasubramani, S.G., Chen, G.P., and Coriani, S. (2020). TURBOMOLE: modular program suite for ab initio quantum‐chemical and condensed‐matter simulations. Journal of Chemical Physics 152: 184107.
106 106 Ma, Q. and Werner, H.‐J. (2018). Explicitly correlated local coupled‐cluster methods using pair natural orbitals. Wiley Interdisciplinary Reviews: Computational Molecular Science 8: e1371.
107 107 Aquilante, F., Pedersen, T.B., and Veryazov, V. (2012). MOLCAS – a software for multiconfigurational quantum chemistry calculations. Wiley Interdisciplinary Reviews: Computational Molecular Science 3: 143–149.
108 108 Sun, Q., Berkelbash, T.C., and Blunt, N.S. (2018). PYSCF: the Python‐based simulations of chemistry framework. Wiley Interdisciplinary Reviews: Computational Molecular Science 8: e1340.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.