Biosurfactants for a Sustainable Future. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Biosurfactants for a Sustainable Future - Группа авторов страница 49

Biosurfactants for a Sustainable Future - Группа авторов

Скачать книгу

oil‐degrading marine bacteria of Mumbai Harbor. Mar. Pollut. Bull. 105: 131–138.

      46 46 Khan, A.H.A., Tanveer, S., Alia, S. et al. (2017). Role of nutrients in bacterial biosurfactant production and effect of biosurfactant production on petroleum hydrocarbon biodegradation. Ecol. Eng. 104: 158–164.

      47 47 Choi, J.W., Choi, H.G., and Lee, W.H. (1996). Effects of ethanol and phosphate on emulsan production by Acinetobacter calcoaceticus RAG‐1. J. Biotechnol. 45 (3): 217–225.

      48 48 Hassanshahian, M., Emtiazi, G., and Cappello, S. (2012). Isolation and characterization of crude‐oil‐degrading bacteria from the Persian Gulf and the Caspian Sea. Mar. Pollut. Bull. 64: 7–12.

      49 49 Peng, F., Liu, Z., Wang, L., and Shao, Z. (2007). An oil‐degrading bacterium: Rhodococcus erythropolis strain 3C‐9 and its biosurfactants. J. Appl. Microbiol. 102: 1603–1611.

      50 50 Wojciechowski, K., Orczyk, M., Gutberlet, T., and Geue, T. (2016). Complexation of phospholipids and cholesterol by triterpenic saponins in bulk and in monolayers. Biochim. Biophys. Acta 1858: 363–373.

      51 51 Ma, T., Li, G., Li, J. et al. (2006). Desulfurization of dibenzothiophene by Bacillus subtilis recombinants carrying dszABC and dszD genes. Biotechnol. Lett. 28: 1095–1100.

      52 52 Mishra, S., Singh, S.N., and Pande, V. (2014). Bacteria induced degradation of fluoranthene in minimal salt medium mediated by catabolic enzymes in vitro condition. Bioresour. Technol. 164: 299–308.

      53 53 Miao, S., Dashtbozorg, S.S., Callow, N.V., and Ju, L.K. (2015). Rhamnolipids as platform molecules for production of potential anti‐zoospore agrochemicals. J. Agric. Food Chem. 63: 3367–3376.

      54 54 Mouillon, J.M. and Persson, B.L. (2006). New aspects on phosphate sensing and signalling in Saccharomyces cerevisiae. FEMS Yeast Res. 6 (2): 171–176.

      55 55 Rivera, O.M.P., Moldes, A.B., Torrado, A.M., and Domínguez, J.M. (2007). Lactic acid and biosurfactants production from hydrolyzed distilled grape marc. Process Biochem. 42 (6): 1010–1020.

      56 56 Sachdev, D.P. and Cameotra, S.S. (2013). Biosurfactants in agriculture. Appl. Microbiol. Biotechnol. 97 (3): 1005–1016.

      57 57 Sriram, M.I., Kalishwaralal, K., Deepak, V. et al. (2011). Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1. Colloids Surf. B Biointerfaces 85 (2): 174–181.

      58 58 Dubey, P., Kumar, S., Aswal, V.K. et al. (2016). Silk fibroin‐sophorolipid gelation: Deciphering the underlying mechanism. Biomacromolecules 17: 3318–3327.

      59 59 Yilmaz, F., Ergene, A., Yalcin, E., and Tan, S. (2009). Production and characterization of biosurfactants produced by microorganisms isolated from milk factory wastewaters. Environ. Technol. 30: 1397–1404.

      60 60 Basak, G. and Das, N. (2014). Characterization of sophorolipid biosurfactant produced by Cryptococcus sp. VITGBN2 and its application on Zn (II) removal from electroplating wastewater. J. Environ. Biol. 35 (6): 1087.

      61 61 Falode, O.A., Adeleke, M.A., and Ogunshe, A.A. (2017). Evaluation of indigenous biosurfactant‐producing bacteria for de‐emulsification of crude oil emulsions. Microbiol. Res. J. Int. 18: 1–9.

      62 62 Zinjarde, S., Chinnathambi, S., Lachke, A.H., and Pant, A. (1997). Isolation of an emulsifier from Yarrowia lipolytica NCIM 3589 using a modified mini isoelectric focusing unit. Lett. Appl. Microbiol. 24 (2): 117–121.

      63 63 Fontes, G.C., Fonseca Amaral, P.F., Nele, M., and Zarur Coelho, M.A. (2010). Factorial design to optimize biosurfactant production by Yarrowia lipolytica. Biomed. Res. Int. 2010: 821306.

      64 64 Stüwer, O., Hommel, R., Haferburg, D., and Kleber, H.P. (1987). Production of crystalline surface‐active glycolipids by a strain of Torulopsis apicola. J. Biotechnol. 6 (4): 259–269.

      65 65 Vacheron, J., Desbrosses, G., Bouffaud, M.L. et al. (2013). Plant growth‐promoting rhizobacteria and root system functioning. Front. Plant Sci. 4: 356.

      66 66 Sarubbo, L.A., do Carmo Marçal, M., Neves, M.L.C. et al. (2001). Bioemulsifier production in batch culture using glucose as carbon source by Candida lipolytica. Appl. Biochem. Biotechnol. 95 (1): 59–67.

      67 67 Bernard, A. and Payton, M. (1995). Fermentation and growth of Escherichia coli for optimal protein production. Curr. Protoc. Protein Sci. 1: 5–3.

      68 68 Blank, L.L., Grosso, L.J., and Benson, J.J. (1984). A survey of clinical skills evaluation practices in internal medicine residency programs. J. Med. Educ. 59 (5): 401–406.

      69 69 Brück, H., Coutte, F., Delvigne, F., Dhulster, P. and Jacques, P., (2020). Optimization of biosurfactant production in a trickle‐bed biofilm reactor with genetically improved bacteria. Poster presented at the 25th National Symposium for Applied Biological Science. Available at: http://hdl.handle.net/2268/247270.

      70 70 Atlić, A., Koller, M., Scherzer, D. et al. (2011). Continuous production of poly ([R]‐3‐hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascade. Appl. Microbiol. Biotechnol. 91 (2): 295–304.

      71 71 Brumano, L.P., Antunes, F.A.F., Souto, S.G. et al. (2017). Biosurfactant production by Aureobasidium pullulans in stirred tank bioreactor: new approach to understand the influence of important variables in the process. Bioresour. Technol. 243: 264–272.

      72 72 Amutha, R. and Gunasekaran, P. (2001). Production of ethanol from liquefied cassava starch using co‐immobilized cells of Zymomonas mobilis and Saccharomyces diastaticus. J. Biosci. Bioeng. 92 (6): 560–564.

      73 73 Rebroš, M., Rosenberg, M., Grosová, Z. et al. (2009). Ethanol production from starch hydrolyzates using Zymomonas mobilis and glucoamylase entrapped in polyvinylalcohol hydrogel. Appl. Biochem. Biotechnol. 158 (3): 561–570.

      74 74 Saikia, R.R., Deka, S., Deka, M., and Sarma, H. (2012). Optimization of environmental factors for improved production of rhamnolipid biosurfactant by Pseudomonas aeruginosa RS29 on glycerol. J. Basic Microbiol. 52 (4): 446–457.

      75 75 Santos, D.K., Rufino, R.D., Luna, J.M. et al. (2016). Biosurfactants: multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 17 (3): 401. https://doi.org/10.3390/ijms17030401.

      76 76 Noah, K.S., Bruhn, D.F., and Bala, G.A. (2005). Surfactin production from potato process effluent by Bacillus subtilis in a chemostat. Appl. Biochem. Biotechnol. 121–124: 465–473.

      77 77 Kiran, G.S., Sabu, A., and Selvin, J. (2010). Synthesis of silver nanoparticles by glycolipid biosurfactant produced from marine Brevibacterium casei MSA19. J. Biotechnol. 148 (4): 221–225.

      78 78 Samad, A., Zhang, J., Chen, D., and Liang, Y. (2015). Sophorolipid production from biomass hydrolysates. Appl. Biochem. Biotechnol. 175: 2246–2257.

      79 79 Adamberg, K., Kask, S., Laht, T.M., and Paalme, T. (2003). The effect of temperature and pH on the growth of lactic acid bacteria: a pH‐auxostat study. Int. J. Food Microbiol. 85 (1–2): 171–183.

      80 80 Klok, A.J., Verbaanderd, J.A., Lamers, P.P. et al. (2013). A model for customising biomass composition in continuous microalgae production. Bioresour. Technol. 146: 89–100.

      81 81 Kebbouche‐Gana, S., Gana, M.L., Ferrioune, I. et al. (2013). Production of biosurfactant on crude date syrup

Скачать книгу