Machine Learning – kurz & gut. Oliver Zeigermann

Чтение книги онлайн.

Читать онлайн книгу Machine Learning – kurz & gut - Oliver Zeigermann страница 8

Machine Learning – kurz & gut - Oliver Zeigermann kurz & gut

Скачать книгу

      Umso erstaunlicher ist es, dass wir mit den Petal-Features sehr viel weiterkommen und fast Werte erzielen wie für alle vier Features zusammen. Wir bleiben bei zehn Nachbarn und bekommen diese Decision Boundaries, die wir in Abbildung 2-5 zuerst zusammen mit den Trainingsdaten anzeigen.

       Abbildung 2-5: Petal-Features-Decision-Boundaries mit Trainingsdaten

      Du kannst glatte Übergänge sehen und ebenso nur geringe Fehler bei den beiden Klassen in der Mitte und rechts. Das spiegelt sich auch in den Scores wider:

      clf_petal_10.score(X_train_petal_only, y_train)

      > 0.96666666666666667

      Nicht perfekt, aber sehr gut, und vor allem sehr ähnliche Scores bei den Testdaten:

      clf_petal_10.score(X_test_petal_only, y_test)

      > 0.94999999999999996

      In Abbildung 2-6 kannst du nun noch einmal dieselben Decision Boundaries sehen, dieses Mal aber mit den Testdaten. An der Decision Boundary rechts kann es keine glatte Grenze geben, die sowohl für die Trainingsdaten als auch für die Testdaten gute Ergebnisse liefert.

       Abbildung 2-6: Petal-Features: Decision Boundaries mit Testdaten

      Das Erstaunliche und Bemerkenswerte hier: Wir haben zwar wieder nur zwei Features verwendet, aber dieses Mal viel bessere Ergebnisse bekommen. Wir lernen daraus, dass es nicht nur auf die Menge der Features ankommt, sondern auch darauf, welche Features man auswählt. Hier hatten wir nur mehr oder weniger Glück mit der Auswahl, wie man das aber systematisch macht und warum das hier so gut geklappt hat, lernst du in Kapitel 5, Feature-Auswahl, und Kapitel 6, Modellvalidierung.

      Die hier erklärte Nearest Neighbors Classification ist relativ einfach, aber erstaunlich häufig ausreichend. In Kapitel 4, Supervised Learning, zeigen wir dir weitere Lernstrategien, die grundsätzlich anders funktionieren.

      Wir hoffen zudem, auf die theoretisch anspruchsvolleren Kapitel 5 und Kapitel 6 neugierig gemacht zu haben. Wie wir trainieren und wie wir Features auswählen, ist offensichtlich essenziell für unseren Erfolg.

       Weiterführende Links

       Jupyter Notebooks: https://jupyter.org/

       Colab Notebooks: https://colab.research.google.com

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4QAYRXhpZgAASUkqAAgAAAAAAAAAAAAAAP/sABFEdWNreQABAAQAAAA8AAD/4QQsaHR0cDov L25zLmFkb2JlLmNvbS94YXAvMS4wLwA8P3hwYWNrZXQgYmVnaW49Iu+7vyIgaWQ9Ilc1TTBNcENl aGlIenJlU3pOVGN6a2M5ZCI/PiA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4 OnhtcHRrPSJBZG9iZSBYTVAgQ29yZSA2LjAtYzAwMiA3OS4xNjQ0ODgsIDIwMjAvMDcvMTAtMjI6 MDY6NTMgICAgICAgICI+IDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5 OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+IDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiIHht bG5zOnhtcE1NPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvbW0vIiB4bWxuczpzdFJlZj0i aHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wL3NUeXBlL1Jlc291cmNlUmVmIyIgeG1sbnM6eG1w PSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAv

Скачать книгу