Sew-It-Yourself Home Accessories. Scott Wynn
Чтение книги онлайн.
Читать онлайн книгу Sew-It-Yourself Home Accessories - Scott Wynn страница 4
The Krenov-style plane, light, made of low friction wood, is a delightful smoother, but I don’t think it’s as versatile a style for all the jobs you might want to use a plane for. Because of the low position of the hand on the plane when making deep cuts to remove stock (as you might with a jack plane), the hand wants to slide forward against the blade. This takes its toll pretty quickly. Also, the selection of blades for this style of plane is limited. Those who favor Krenov-style planes might want to supplement their arsenal of planes with a traditional style jack, and maybe a jointer and scrub, depending on the type and size of work you do.
The Japanese-style plane is light, low friction, comes with some of the best blades you can get, and performs pretty well through most tasks, including stock removal—except when you have to remove a lot of stock in a hard wood. Surprisingly, despite no outward accommodation to the hand, they are not blistering, or even particularly fatiguing. But as a pull-plane, you do have to hold on to it; with a push-plane, if the grips are right, the plane is cradled in large parts of the hands so if you didn’t have to lift it to bring it back very little effort would be expended holding on to it. Additionally, with a push-plane it’s easier to get your body weight down and behind the push; this is more difficult when pulling a plane.
And finally, there is the issue of affordability. The traditional wood plane beats the competition here as you can often find usable vintage planes for a fraction of the cost of even a vintage Bailey—and often at one-tenth the cost of a new premium Bailey. A lot of these planes were made and a lot of them are still out there, and so far non-collectible user planes are still quite affordable. And you can get something on these planes that you can’t get on a new plane: a hand-forged laminated blade—often the best choice for smoothing (more on this later). While newly manufactured versions of the traditional wood plane may be as costly as a decent Bailey plane, they maintain the advantages of lower weight, low friction, good ergonomics while often having improved adjustment mechanisms, and the advantage over a vintage wood plane of not having to invest time to repair them before you can use them.
This book is about the traditional wood planes used predominantly in Europe and North America, both vintage and contemporary, and also will touch on the planes of China and Southeast Asia and how they might be useful. It will show you how all these traditional wood planes work, how to set up a flea-market find, as well as how to tune up a new plane to get the best performance out of it. It will talk about the different types and how to use them to their best advantage; which blade angles are best, which blade steel you might want to use, and finally, how to make your own set of planes using some modern techniques that simplify construction and improve performance.
CHAPTER
1
ANATOMY OF THE TRADITIONAL HANDPLANE
A SIMPLE DESIGN
The anatomy of the traditional wooden handplane couldn’t be too much simpler, really, especially when compared to the number of sophisticated parts that the Stanley/Bailey plane uses to do the same job. Up until the 18th Century it consisted of just three parts: the blade, the block, and the wedge (only the Japanese plane is simpler with only two parts: a blade and a block). Bigger planes often had a handle, or “tote.” Sometime in the early 1700s the use of a chipbreaker became increasingly common, adding a fourth part.
On the left, a traditional jack plane with its wedged blade, a system in use for centuries. On the right a modern German horned jack plane, with a spring-loaded screw adjustment mechanism for adjusting the blade.
Figure 1-1. Wood Block Plane
THE BLADES
Unlike today’s planes, up until the early 20th century wood-body planes from Europe and North America usually had a tapered blade, thicker where the cutting edge is and thinning toward the opposite end. The main reason given for this is that the natural wedging action of a tapered blade resists being pushed back under the load of cutting wood, and also makes it easier to remove, because you can tap the blade down and it will release quite quickly (often too quickly). But it also makes it harder to adjust: if you adjust the blade down too far you may have to completely loosen the wedge and blade and start over if you want to readjust the blade back up.
I think the reasons usually given, such as this one, are the (questionable) side benefits of the method of manufacturing the blade. As we all know now—and they probably did then—parallel blades stay put just fine under the wedge. They are also easier to adjust because they do not lock in so tightly in one direction. You can move them down further than a fraction of an inch and not have to worry about them unexpectedly flying out of the mouth of the plane.
Here is my theory for the taper. When making a laminated blade by hand, you have the extra thickness of the edge steel added to the backing steel blade blank, the two of which must be forge-welded together. Then you have to hammer the assembly until the backing steel flushes with the edge steel on the top of the blade. If you do not hammer out the blade at the edge end as well—it is easier not to—then you have begun giving the blade a taper. From there, you continue the taper just making sure the back of the blade is slightly concave along its length. This guarantees the blade will bed properly at the heel despite any irregularities along its length, or irregularities in the hand-cut bed. This also means you can reduce the amount of grinding on the back. I have blades that still have the hammer marks on the back (Figure 1-2). A parallel blade must be accurately ground on both faces, which cannot easily be done freehand. An added benefit is you have maximized the thickness of the blade near the edge, further reducing the chances of chattering in use, especially if a substantial chipbreaker is added.
Modern versions of the traditional form have parallel blades and are only rarely laminated, though I do have a German scrub plane from the early 1980s that has a laminated blade. They were made and can be found (and laminated Japanese replacement blades for these planes are available), you just have to keep your eye out for them (for more on why you might want a laminated blade—and what it is, see the chapter on steel that starts here).
CHIPBREAKERS
Woodworkers throughout the world had for millennia worked with the same somewhat narrow selection of indigenous woods, often a single species, or no more than two or three, within a trade. They knew how the wood reacted, which tools and their setup worked best for those species, and they had a good selection of material and better control of their sources. New Worlds, new prosperity, greater travel and print exposure, brought a higher level of sophistication to their customers, which brought a demand for new designs and a higher degree of finish in the work. Additionally, new and imported woods often brought new challenges to providing this higher degree of finish than the indigenous woods they had worked with for centuries. The use of a chipbreaker helped solve some of these problems. It made planing these new woods more reliable, so the work went faster and with better results (see Figure 1-1).