Organic Electronics 1. Thien-Phap Nguyen
Чтение книги онлайн.
Читать онлайн книгу Organic Electronics 1 - Thien-Phap Nguyen страница 5
191 188
192 189
193 191
194 192
195 193
196 194
197 195
198 196
199 197
Series Editor
Robert Baptist
Organic Electronics 1
Materials and Physical Processes
Thien-Phap Nguyen
First published 2021 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:
ISTE Ltd
27-37 St George’s Road
London SW19 4EU
UK
John Wiley & Sons, Inc.
111 River Street
Hoboken, NJ 07030
USA
© ISTE Ltd 2021
The rights of Thien-Phap Nguyen to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.
Library of Congress Control Number: 2020948483
British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 978-1-78630-321-9
Introduction
Organic electronics can be defined as a branch of general electronics that focuses on studying the properties and applications of organic semiconductors. These materials, referred to in common usage as plastics, are, in fact, a distinct class separate from that of ordinary plastic materials. They may be small molecules, or conjugated polymers, which have an electronic structure comparable to that of conventional semiconductors. Therefore, their physical properties are very similar to the properties of these latter materials. However, organic materials are generally amorphous and their electrical conductivity is much lower than that of traditional semiconductors. As a result, they have been neglected for a long time despite the discovery of some of their notable physical properties, such as the discovery of electroluminescence in anthracene in the 1960s.
In all scientific or technological disciplines, an idea, concept or creation can arise with a change or progression and profoundly alter the course of the evolution of the discipline – and sometimes even the course of the history of science. Such was the case in 1947 when the researchers John Bardeen, William Shockley and Walter Brattain invented the transistor, a device that would revolutionize traditional electronics. This invention is what first allowed for the design of circuits that provided logical functions, then for these circuits to be integrated into complex systems capable of handling sophisticated tasks, and finally for these miniaturized systems to be incorporated into the portable electronic devices that we now use every day. A similar progression occurred in organic electronics in 1987, when Tang and Van Slyke used the evaporation of small molecules in a vacuum to create diodes that emitted light in the form of a thin film that operated with a turn-on voltage lower than 10 V. Their work demonstrated that, in practice, organic devices are suitable for optoelectronic applications in the same way as their inorganic counterparts. A few years later, Burroughs et al. (1994) demonstrated that by using conjugated polymers deposited as thin films from a solution, they could also produce light-emitting diodes with a low operating voltage. This work paved the way for film depositing techniques using solutions and led to the production of devices through printing developed later in laboratories. For this domain, we will use the descriptors “flexible” or “printed” to indicate the discipline of organic electronics. Advances in research have been very rapid and have shown remarkable results, not only in the understanding of physical processes in materials and components but also for the creation of new electronic devices now available on the market. Today, organic electronics has become its own field, one that will prove to be important technologically and economically in the near future.
In France, education on organic electronics at the university level is developing, but remains limited in comparison with other European countries. It should be noted that these courses are generally offered in universities that carry out industrial research and development activities on organic electronic materials and devices. With regard to the books written on this discipline, there are very few titles available in French.
This book, divided into two volumes, was written with the goal of introducing organic electronics to students and researchers who are interested in this new discipline. It is organized into the following sections: Chapter 1 of Volume 1 provides an overview of the basic notions of the theory of traditional semiconductors, of which some of the material presented will be used later on. The materials used for the creation of devices are described in Chapter 2. The physical processes, which take place in the volume and interface of the layers of devices, are presented and explained in Chapters 3, 4 and 5. Volume 2 presents the primary applications of organic materials in optoelectronic devices. The first chapter of this volume centers on organic light-emitting diodes (OLEDs), the second on organic solar cells (OSCs or OPVs) and the third on organic field-effect transistors (OFETs). Chapter 4 deals