Infrared Spectroscopy of Symmetric and Spherical Spindles for Space Observation 1. Pierre-Richard Dahoo

Чтение книги онлайн.

Читать онлайн книгу Infrared Spectroscopy of Symmetric and Spherical Spindles for Space Observation 1 - Pierre-Richard Dahoo страница 7

Infrared Spectroscopy of Symmetric and Spherical Spindles for Space Observation 1 - Pierre-Richard Dahoo

Скачать книгу

and to provide the tools for their spectroscopic study in a confined environment, such as the clathrates.

      Vincent BOUDON

      Research Director (CNRS – French National Center for Scientific Research)

      Laboratoire interdisciplinaire Carnot de Bourgogne (ICB)

      January 2021

      Preface

      Infrared (IR) spectroscopic analysis is of fundamental interest for understanding the physics of the atmosphere and planets, as well as for the study of observable molecules in astrophysics. In the space field of space sciences or exploration, observations conducted by means of instruments at the ground level, or airborne by space probes or space telescopes, contribute to the discoveries that drive science forward or participate in observational sciences. The resulting database enables the confirmation or clarification of theoretical predictions that improve our understanding of the physical and chemical phenomena and processes in the surrounding environments. These observations are facilitated by technological advances and progresses both in the implementation of detection systems and in the analysis conducted by increasingly high-performance computers using ever better controlled statistical methods or theoretical models for the analysis of observational data. A recent example of black hole observation is worth mentioning:

      The Event Horizon Telescope (EHT) is a large telescope array consisting of a global network of radio telescopes and the EHT project combines data from several very-long-baseline interferometry (VLBI) stations around Earth with angular resolution sufficient to observe objects of the size of a supermassive black hole’s event horizon.

      The authors collaborating on the EHT project apply the methods that rely on the interference of electromagnetic waves using an array of instruments located at various sites on the Earth’s surface. The methods applied are increasingly sophisticated and require international collaborations for data collection, analysis and development in order to reveal the observed phenomenon.

      The diversity of discoveries contributes to advances in the field of astrophysics and cosmology, building a better understanding of the phenomena at the origin of the universe and addressing the nature and distribution of its constituents that are currently considered to be composed of below 5% visible matter, about 25% dark matter and 70% dark energy, which is responsible for a force that repels gravity and is believed to contribute to the expansion of the universe. Thanks to the analyzed data from space observations, astronomers and physicists have to improve the theoretical approaches, among which the following are worth mentioning: the cosmological model and Einstein’s equation in the general theory of relativity or the geometric theory of gravitation published in 1915 [EIN 15], and baryogenesis as an interpretation of the predominance of matter over antimatter [SAK 67]. Similarly, using automated and connected instruments, such as that of the Mars Perseverance Rover 2020 which was successfully launched on July 30, 2020, planetary exploration programs pave the way for observations and data analysis whose interpretation requires theoretical models adapted to various ranges of the electromagnetic spectrum, including IR spectroscopy, which is the focus of this volume.

      Theoretical and experimental spectroscopies contribute to the development of methods and devices for the observation and analysis of spectra corresponding to chemical species, molecules, radicals and ions in specific environments, as shown in Volumes 1 and 2 of the set Infrared Spectroscopy [DAH 17, DAH 19]. In the IR range, various types of instruments can be used for space observation, in order to detect molecules or chemical species (ions, radicals, macromolecules, nanocages, etc.) present in the atmosphere of planets, including the Earth, and their satellites, as well as in interstellar media, comets or exoplanets.

      As mentioned in the preface to Volumes 1 and 2, the application of methods and tools of theoretical spectroscopy initially developed in molecular spectroscopy for the gas phase and adapted to environments in which the motion of the considered molecule is perturbed makes it possible to not only determine the structure of chemical species (in the gas, liquid or solid phase), but to also identify the species (atoms, molecules, molecular fragments, radicals, etc.) in various environments (nanocavities, media containing various species, ice surface, dust surface, etc.). The species themselves can be used as probes in order to characterize the environment (temperature, pressure, composition) and determine its nature based on theoretical models developed for the analysis of corresponding data.

      This book describes the theoretical methods developed in the framework of fundamental research for the interpretation of the spectra of ammonia molecules, which are characterized by a ternary axis of symmetry, from observed spectra in the IR range when these molecules are subjected to an environment in which the temperature and pressure modify their IR gas phase spectra or in nanocages. It describes the theoretical models for the study of ammonia and methane molecules in these media based on the theoretical models elaborated for the gas phase. The modification of the IR spectra of these molecules can also be interpreted, such as the shift of the band centers or the modification of the rovibrational spectrum in nanocages or on surfaces.

      This book is intended for students at master and doctoral levels, teaching academics and researchers, astronomers and astrophysicists who analyze the data derived from the interaction between electromagnetic radiation and matter in the IR range, in order to identify the chemical species and their environments.

      This

Скачать книгу