AI and IoT-Based Intelligent Automation in Robotics. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу AI and IoT-Based Intelligent Automation in Robotics - Группа авторов страница 4

AI and IoT-Based Intelligent Automation in Robotics - Группа авторов

Скачать книгу

insertion precision.Table 9.4 One expression translation.

      5 Chapter 15Table 15.1 Comparison of various technologies involved in V2V communication.

      6 Chapter 16Table 16.1 Motor directions for wheelchair movements.

      7 Chapter 19Table 9.1 Error obtained in each model.Table 9.2 Trained model performance.

      8 Chapter 20Table 20.1 Evaluation of audio signals and the respective extricated watermark i...Table 20.2 Quality analysis of extracted watermark images under various attacks.

      9 Chapter 21Table 21.1 Simulation parameters of DCO-OFDM.

      10 Chapter 22Table 22.1 Dimensions of materials used in the fabrication of the mechanical ass...Table 22.2 Volume of the syringe discharged in 60 seconds.Table 22.3 Maximum deviation in time taken for discharge of oil and water.

      List of Illustrations

      1 Chapter 2Figure 2.1 Venn diagram of AI, ML and DL.Figure 2.2 Representation of an agent.Figure 2.3 Architecture of the Internet of Things.Figure 2.4 Basic robot architecture.Figure 2.5 Workings of an industrial robot.Figure 2.6 Workingsof a healthcare robot.Figure 2.7 Workings of agricultural robots.Figure 2.8 Types of machine learning algorithms.Figure 2.9 Applications of Robotics.

      2 Chapter 3Figure 3.1 The journey of weapons in warfare.Figure 3.2 “Warrior,” the first Chinese patient robot.Figure 3.3 Armed robots being developed for U.S. armed forces.Figure 3.4 Some advanced Russian military robots.Figure 3.5 Indian military robots.Figure 3.6 Autonomous drones in action.Figure 3.7 Autonomous tanks.Figure 3.8 Autonomous submarines and ships currently under development.Figure 3.9 Some examples of humanoid armed robots.Figure 3.10 Armed soldier exoskeletons.

      3 Chapter 4Figure 4.1 Artificial intelligence market for healthcare applications in the wor...Figure 4.2 Robotics system.Figure 4.3 Robotics in healthcare.Figure 4.4 Some of the apps symbolic of the rise of mobile healthcare.Figure 4.5 Uses for AI-enabled IoT.Figure 4.6 Areas of healthcare being enhanced by AI and robotics.Figure 4.7 Uses for the IoMRT.Figure 4.8 Architecture of the IoMRT.

      4 Chapter 5Figure 5.1 Steps in attaining the objective.Figure 5.2 Proposed system steps.Figure 5.3 Steps in extraction of information.Figure 5.4 Mapping user activities with movement of robots.Figure 5.5 Representation of subclass.Figure 5.6 Performance comparison chart.Figure 5.7 Comparison of proposed system with existing system.

      5 Chapter 6Figure 6.1 Sensors that are used to collect patient’s health data.Figure 6.2 Flowchart of modules in the healthcare management system.

      6 Chapter 7Figure 7.1 Relationship of related AI definitions [3].Figure 7.2 Daksh remotely operated vehicles.Figure 7.3 Applications of Artificial Intelligence For Militaries.

      7 Chapter 8Figure 8.1 Robotic process automation (RPA). [https://www.google.com/search?q=ro...Figure 8.2 Cycle of robotics process automation. Hand drawn.Figure 8.3 Artificial Intelligence and robotics process automation. [https://tow...Figure 8.4 Internet of robotic things – converging sensing/actuating, hypoconnec...

      8 Chapter 9Figure 9.1 Robot movement based on human instructions.Figure 9.2 Sample NLP process.Figure 9.3 Steps in proposed system.Figure 9.4 Text transformation using NLP.Figure 9.5 Sentence separation sample text.Figure 9.6 Lemmatized sample text.Figure 9.7 Stop word recognition of sample text.Figure 9.8 Parsing dependencies in sample text.Figure 9.9 Recognition of noun phrases in sample text.Figure 9.10 Input data given to robots.Figure 9.11 LSTM processing information in instructions given to robots (Sentenc...Figure 9.12 States of LSTM.

      9 Chapter 10Figure 10.1 Surgical robot.Figure 10.2 Robotics exoskeletons.Figure 10.3 An example of robotic prosthetics.Figure 10.4 Examples of artificial organs.Figure 10.5 Outpatient pharmacy automation.Figure 10.6 Educational robots.Figure 10.7 The six As of evidence-based practice.

      10 Chapter 11Figure 11.1 Thermopile radiation sensors.Figure 11.2 Optical fiber pyrometers.Figure 11.3 RGB sensor with IR filter.Figure 11.4 A 3D sensor.Figure 11.5 Thermal infrared images.Figure 11.6 YOLO BBox Annotation Tool user interface with annotated image.Figure 11.7 Image produced with the IN-DEPTH camera for fever detection.Figure 11.8 Power heater.Figure 11.9 Accuracy.Figure 11.10 Classification.Figure 11.11 RGB sensor proposed method.Figure 11.12 BB-2 temperature.

      11 Chapter 12Figure 12.1 Classifications of the UAVs.Figure 12.2 An example of a fixed-wing drone.Figure 12.3 Example of a rotary-wing drone.Figure 12.4 Development of UAVs using the IoT.Figure 12.5 Framework of UVAs using 5G.Figure 12.6 Data links.Figure 12.7 Architecture of UAVs.Figure 12.8 Network formed between the wireless sensor network and the drone.Figure 12.9 Data upload process.Figure 12.10 Data download process.Figure 12.11 UAV traffic management.Figure 12.12 Traffic management using the UTM system.Figure 12.13 Situation awareness.Figure 12.14 Public safety.

      12 Chapter 13Figure 13.1 Trajectory path for the filed assessment.Figure 13.2 View of farm field through UAV camera.Figure 13.3 View of farm through UAV camera (zoom).Figure 13.4 View of farm through UAV camera (more zoom).Figure 13.5 View of farm through UAV camera (max zoom).Figure 13.6 OODA working on decision-making process.Figure 13.7 System architecture.Figure 13.8 UAV-hyper-spectral image.Figure 13.9 Combining UAV-multispectral and UAV-hyperspectral images.Figure 13.10 Bayesian graphs.Figure 13.11 Image showing the location of a fruit field in a surveyed farm.Figure 13.12 These are the thermal images which are used for FLIR systems used t...Figure 13.13 These are the thermal images which are used for FLIR systems used t...Figure 13.14 UAAVs/drones used for work in the agriculture sector.Figure 13.15 Normalized difference vegetation index (NDVI) image and soil image ...

      13 Chapter 14Figure 14.1 Destination-sequenced distance vector routing protocol.Figure 14.2 Architecture of PANet.

      14 Chapter 15Figure 15.1 Block diagram of ARM and Zigbee for vehicle-to-vehicle communication...Figure 15.2 V2V communication using Wi-Fi.Figure 15.3 V2V

Скачать книгу