Basic Virology. Martinez J. Hewlett

Чтение книги онлайн.

Читать онлайн книгу Basic Virology - Martinez J. Hewlett страница 48

Basic Virology - Martinez J. Hewlett

Скачать книгу

further, among eukaryotes, it is increasingly clear that there are significant differences in detail between certain processes in plants and animals. For this reason, viruses infecting different members of these kingdoms must make different accommodations to the molecular genetic environment in which they replicate. Thus, the nature of the host is an important criterion in a complete classification scheme.

      Note also that there is no consideration of the disease caused by a virus in the classification strategy. Related viruses can cause very different diseases. For example, poliovirus and hepatitis A virus are clearly related, yet the diseases caused are quite different. Another more extreme example is a virus with structural and molecular similarities to rabies virus that infects Drosophila and causes sensitivity to carbon dioxide!

      Knowledge of the particulars of a virus's structure and the basic features of its replication can be used in a number of ways to build a general classification of viruses. In 1971, David Baltimore suggested a scheme for virus classification based on the way in which a virus produces messenger RNA (mRNA) during infection. The logic of this consideration is that in order to replicate, all viruses must express mRNA for translation into protein, but how they do this is determined by the type of genome utilized by the virus. In this system, viruses with RNA genomes whose genome is the same sense as mRNA are called positive‐sense (+ sense) RNA viruses, while viruses whose genome is the opposite (complementary) sense of mRNA are called negative‐sense (− sense) RNA viruses. Viruses with double‐stranded genomes obviously have both senses of the nucleic acid.

      While molecular principles of classification are of obvious importance to molecular biologists and molecular epidemiologists, other schemes have a significant amount of value to medical and public health professionals. The importance of insects in the spread of many viral diseases has led to many viruses being classified as arthropod‐borne viruses, or arboviruses. Interestingly, many of these viruses have general or specific similarities, although many arthropod‐borne viruses are not part of this classification. The relationships between two groups of RNA viruses that are classified as arboviruses are described in some detail in Part IV, Chapter 13.

      Viruses can also be classified by the nature of the diseases they cause, and a number of closely or distantly related viruses can cause diseases with similar features. For example, two herpesviruses, Epstein–Barr virus (EBV) and human cytomegalovirus (HCMV), cause infectious mononucleosis, and the exact cause of a given clinical case cannot be fully determined without virological tests. Of course, completely unrelated viruses can cause similar diseases too. Still, disease‐based classification systems are of value in choosing potential candidates for the etiology of a disease. A general grouping of some viruses by similarities of the diseases caused or organ systems infected was presented in Table 3.1.

RNA‐containing viruses
Single‐stranded RNA virusesPositive sense (virion RNA like cellular mRNA)NonenvelopedIcosahedralPicornavirusa (poliovirus,a hepatitis A virus,a rhinovirusa)CalicivirusesPlant virus relatives of picornavirusesMS2 bacteriophageaEnveloped Icosahedral Togavirusesa (rubella,a equine encephalitis, Sindbisa)Flavivirusesa (yellow fever,a dengue fever, Zika virus)Helical Coronavirusa (SARS‐CoV, MERS‐CoV)Positive sense but requires RNA to be converted to DNA via a virion‐associated enzyme (reverse transcriptase) Enveloped Retrovirusesa Oncornavirusesa (Rous sarcoma virus)Lentivirusesa (HIV)Negative‐sense RNA (opposite polarity to cellular mRNA, requires a virion‐associated enzyme to begin replication cycle) Enveloped Helical Mononegavirusesa (rabies,a vesicular stomatitis virus,a Ebola virusa)Segmented genome (orthomyxovirus–influenza,a bunyavirus‐hantavirus,a arenavirusa) Double‐stranded RNA virusesNonenveloped Icosahedral (reovirus,a rotavirusa) Single‐stranded DNA virusesNonenveloped Icosahedral Parvovirusesa (canine distemper, adeno‐associated virusa)Bacteriophage ΦX174a Double‐stranded DNA virusesNuclear replication Nonenveloped Icosahedral Small circular DNA genome (papovaviruses–SV40,a polyomaviruses,a papillomavirusesa)“Medium”‐sized, complex morphology, linear DNA (adenovirusa)Enveloped – nuclear replicating Icosahedral Herpesvirusesa (linear DNA)Hepadnavirusa (virion encapsidates RNA that is converted to DNA by reverse transcriptase)Cytoplasmic replication Icosahedral IridovirusComplex symmetry PoxvirusaBacterial viruses Icosahedral with tailT‐series bacteriophagesaBacteriophage

Скачать книгу