Statistical Methods and Modeling of Seismogenesis. Eleftheria Papadimitriou
Чтение книги онлайн.
Читать онлайн книгу Statistical Methods and Modeling of Seismogenesis - Eleftheria Papadimitriou страница 26
10) increase Ncell_ev by 1;
11) go to (1);
12) store the event parameters;
13) the time, the event sequential number and other parameters of the event are written on the output file.
A cell can be ruptured more than once in the same event. The program proceeds by one time step, adding the tectonic slip rate for one time step to every cell, and the search for a new nucleation point starts again. The process stops when the time assigned for the output catalog is exceeded.
2.7. References
Barall, M. and Tullis, T.E. (2015). The performance of triangular fault elements in earthquake simulators. Seismol. Res. Lett., 87(1), 164–170.
Burridge, R. and Knopoff, L. (1967). Model and theoretical seismicity. Bull. Seism. Soc. Am., 57, 341–371.
Christophersen, A., Rhoades, D.A., Colella, H.V. (2017). Precursory seismicity in regions of low strain rate: Insights from a physics-based earthquake simulator. Geophys. J. Int., 209, 1513–1525.
Colella, H.V., Dieterich, J.H., Richards-Dinger, K.B. (2011). Multi-event simulations of slow slip events for a Cascadia-like subduction zone. Geophys. Res. Lett., 38.
Console, R. and Catalli, F. (2006). A rate-state model for aftershocks triggered by dislocation on a rectangular fault: A review and new insights. Ann. Geophys., 49(6), 1187–1201.
Console, R., Carluccio, R., Papadimitriou, E., Karakostas, V. (2015). Synthetic earthquake catalogs simulating seismic activity in the Corinth gulf, Greece, fault system. J. Geophys. Res., 120(1), 326–343.
Console, R., Nardi, A., Carluccio, R., Murru, M., Falcone, G., Parsons, T. (2017). A physics-based earthquake simulator and its application to seismic hazard assessment in Calabria (southern Italy) region. Acta. Geophys., 65, 243–257.
Console, R., Chiappini, M., Minelli, L., Speranza, F., Carluccio, R., Greco, M. (2018a). Seismic hazard in southern Calabria (Italy) based on the analysis of a synthetic earthquake catalog. Acta Geophysica, 66, 931–943.
Console, R., Vannoli, P., Carluccio, R. (2018b). The seismicity of the Central Apennines (Italy) studied by means of a physics-based earthquake simulator. Geophys. J. Int., 212, 916–929.
Dieterich, J.H. (1994). A constitutive law for rate of earthquake production and its application to earthquake clustering. J. Geophys. Res., 99, 2601–2618.
Dieterich, J.H. and Richards-Dinger, K.B. (2010). Earthquake recurrence in simulated fault systems. Pure Appl. Geophys., 167, 1087–1104.
Dieterich, J.H., Richards-Dinger, K.B., Kroll, K.A. (2015). Modeling injection-induced seismicity with the physiscs-based earthquake simulator RSQSim. Seism. Res. Lett., 86(4), 1–8.
Field, E.H. (2015). Computing elastic-rebound motivated earthquake probabilities in unsegmented fault models: A new methodology supported by physics-based simulators. Bull. Seism. Soc. Am., 105(2A), 544–559.
Field, E.H. (2019). How physics-based earthquake simulators might help improve earthquake forecasts. Seism. Res. Lett., 9.
Goes, S.D.B. and Ward, S.N. (1994). Synthetic seismicity for the San Andreas Fault. Ann. Geophys., 37, 1495–1513.
Gulia, L. and Wiemer, S. (2019). Real-time discrimination of earthquake foreshocks and aftershocks. Nature, 574(7777), 193–199 [Online]. Available at: doi: 10.1038/s41586-019- 1606-4 [Accessed 9 October 2019].
Gulia, L., Tormann, T., Wiemer, S., Hermann, M., Seif, S. (2016). Short-term probabilistic earthquake risk assessment considering time-dependent b-values. Geoph. Res. Lett, 43(3), 1100–1108.
Khodaverdian, A., Zafarani, H., Rahimian, M. (2016a). Using a physics-based earthquake simulator to evaluate seismic hazard in NW Iran. Geophys J. Int., 206(379–394), 2624–2639.
Khodaverdian, A., Zafarani, H., Schultz, K.W., Rahimian, M. (2016b). Recurrence time distributions of large earthquakes in Eastern Iran. Bull. Soc. Seismol. Am., 106(6), 2624–2639.
Mele, F.M., Marcocci, C., Bono, A., Marchetti, A. (2010). ISIDe, Italian Seismological Instrumental and parametric Data-base. INGV, CNT [Online]. Available at: http://iside.rm.ingv.it/iside/standard/index.jsp.
Montuori, C., Murru, M., Falcone, G. (2016). Spatial variation of the b-value observed for the periods preceding and following the 24 August 2016, amatrice earthquake (ml6.0) (Central Italy). Annals of Geophysics, 5, 2016.
Mosca, I., Console, R., D’Addezio, G. (2012). Renewal models of seismic recurrence applied to paleoseismological and historical observations. Tectonophysics, 564, 54–67.
Parsons, T. and Geist, E.L. (2009). Is there basis for preferring characteristic earthquakes over Gutenberg–Richter distributions on individual faults in probabilistic earthquake forecasting? Bull. Seismol. Soc. Am., 99, 0120080069.
Parsons, T., Console, R., Falcone, G., Murru, M., Yamashina, K. (2013). Comparison of characteristic and Gutenberg–Richter models for time-dependent M ≥ 7.9 earthquake probability in the Nankai–Tokai subduction zone. Japan. Geophys. J. Int, 190(3),1673–1688.
Parsons, T., Geist, E.L., Console, R., Carluccio, R. (2018). Characteristic earthquake magnitude frequency distributions on faults calculated from consensus data in california. J. Geoph. Res., 123(12), 761–10.
Pollitz, F.F. (2011). Epistemic uncertainty in California-wide synthetic seismicity simulations. Bull. Seismol. Soc. Am., 101, 2481–2498.
Pollitz, F.F. (2012). Viscosim earthquake simulator. Seismol. Res. Lett., 83, 979–982.
Pollitz, F.F. and Schwartz, D. (2008). Probabilistic seismic hazard in the San Francisco Bay area based on a simplified viscoelastic-cycle model of fault interactions. J. Geophys. Res., 113.
Reid, H.F. (1910). The mechanics of the California earthquake of April 18, 1906, report of the State Investigation Commission, vol. 2. Technical Report, Carnegie Institution of Washington, Washington, DC.
Richards-Dinger, K.B. and Dieterich, J.H. (2012). RSQSim earthquake simulator. Seismol. Res. Lett., 83(6), 983–990.
Rovida, A., Camassi, R., Gasperini, P., Stucchi, M. (2011). CPTI11, 2011 version, Parametric Catalogue of Italian Earthquakes. INGV, Milan, Bologna [Online]. Available at: http://emidius.mi.ingv.it/CPTI11.
Rundle, J.B. and Brown, S. (1991). Origin of rate dependence in frictional sliding. J. Stat. Phys., 65(1), 403–412.
Rundle, J.B. and Jackson, D.D. (1977). Numerical simulation of earthquake sequences. Bull. Seismol. Soc. Am., 87, 1363–1377.
Rundle, J.B., Rundle, P.B., Tiampo, K.F., Donnellan, A., Klein,