The Complete Essays by Herbert Spencer (Vol. 1-3). Spencer Herbert

Чтение книги онлайн.

Читать онлайн книгу The Complete Essays by Herbert Spencer (Vol. 1-3) - Spencer Herbert страница 19

Автор:
Серия:
Издательство:
The Complete Essays by Herbert Spencer (Vol. 1-3) - Spencer Herbert

Скачать книгу

out that this is a law of all things, we proceeded to show deductively that the multiform evolutions of the homogeneous into the heterogeneous—astronomic, geologic, ethnologic, social, &c.—were explicable as consequences. And though in the case of organic evolution, lack of data disabled us from specifically tracing out the progressive complication as due to the multiplication of effects; yet, we found sundry indirect evidences that it was so. Now in so far as this conclusion, that organic evolution results from the decomposition of each expended force into several forces, was inferred from the general law previously pointed out, it was an example of deductive physiology. The particular was concluded from the universal.

      We here propose in the first place to show, that there is another general truth closely connected with the above; and in common with it underlying explanations of all progress, and therefore the progress of organisms—a truth which may indeed be considered as taking precedence of it in respect of time, if not in respect of generality. This truth is, that the condition of homogeneity is a condition of unstable equilibrium.

      The phrase unstable equilibrium is one used in mechanics to express a balance of forces of such kind, that the interference of any further force, however minute, will destroy the arrangement previously existing, and bring about a different arrangement. Thus, a stick poised on its lower end is in unstable equilibrium: however exactly it may be placed in a perpendicular position, as soon as it is left to itself it begins, at first imperceptibly and then visibly, to lean on one side, and with increasing rapidity falls into another position. Conversely, a stick suspended from its upper end is in stable equilibrium: however much disturbed, it will return to the same position. Our meaning is, then, that the state of homogeneity, like the state of the stick poised on its lower end, is one that cannot be maintained; and that hence results the first step in its gravitation towards the heterogeneous. Let us take a few illustrations.

      Of mechanical ones the most familiar is that of the scales. If accurately made and not clogged by dirt or rust, a pair of scales cannot be perfectly balanced: eventually one scale will descend and the other ascend—they will assume a heterogeneous relation. Again, if we sprinkle over the surface of a liquid a number of equal-sized particles, having an attraction for one another, they will, no matter how uniformly distributed, by and by concentrate irregularly into groups. Were it possible to bring a mass of water into a state of perfect homogeneity—a state of complete quiescence, and exactly equal density throughout—yet the radiation of heat from neighbouring bodies, by affecting differently its different parts, would soon produce inequalities of density and consequent currents; and would so render it to that extent heterogeneous. Take a piece of red-hot matter, and however evenly heated it may at first be, it will quickly cease to be so: the exterior, cooling faster than the interior, will become different in temperature from it. And the lapse into heterogeneity of temperature, so obvious in this extreme case, is ever taking place more or less in all cases. The actions of chemical forces supply other illustrations. Expose a fragment of metal to air or water, and in course of time it will be coated with a film of oxide, carbonate, or other compound: its outer parts will become unlike its inner parts. Thus, every homogeneous aggregate of matter tends to lose its balance in some way or other—either mechanically, chemically, thermally or electrically; and the rapidity with which it lapses into a non-homogeneous state is simply a question of time and circumstances. Social bodies illustrate the law with like constancy. Endow the members of a community with equal properties, positions, powers, and they will forthwith begin to slide into inequalities. Be it in a representative assembly, a railway board, or a private partnership, the homogeneity, though it may continue in name, inevitably disappears in reality.

      The instability thus variously illustrated becomes still more manifest if we consider its rationale. It is consequent on the fact that the several parts of any homogeneous mass are necessarily exposed to different forces—forces which differ either in their kinds or amounts; and being exposed to different forces they are of necessity differently modified. The relations of outside and inside, and of comparative nearness to neighbouring sources of influence, imply the reception of influences which are unlike in quantity or quality or both; and it follows that unlike changes will be wrought in the parts dissimilarly acted upon. The unstable equilibrium of any homogeneous aggregate can thus be shown both inductively and deductively.

      And now let us consider the bearing of this general truth on the evolution of organisms. The germ of a plant or animal is one of these homogeneous aggregates—relatively homogeneous if not absolutely so—whose equilibrium is unstable. But it has not simply the ordinary instability of homogeneous aggregates: it has something more. For it consists of units which are themselves specially characterized by instability. The constituent molecules of organic matter are distinguished by the feebleness of the affinities which hold their component elements together. They are extremely sensitive to heat, light, electricity, and the chemical actions of foreign elements; that is, they are peculiarly liable to be modified by disturbing forces. Hence then it follows, a priori, that a homogeneous aggregate of these unstable molecules will have an excessive tendency to lose its equilibrium. It will have a quite special liability to lapse into a non-homogeneous state. It will rapidly gravitate towards heterogeneity.

      Moreover, the process must repeat itself in each of the subordinate groups of organic units which are differentiated by the modifying forces. Each of these subordinate groups, like the original group, must gradually, in obedience to the influences acting on it, lose its balance of parts—must pass from a uniform into a multiform state. And so on continuously.

      Thus, starting from the general laws of things, and the known chemical attributes of organic matter, we may conclude deductively that the homogeneous germs of organisms have a peculiar proclivity towards a non-homogeneous state; which may be either the state we call decomposition, or the state we call organization.

      At present we have reached a conclusion only of the most general nature. We merely learn that some kind of heterogeneity is inevitable; but as yet there is nothing to tell us what kind. Besides that orderly heterogeneity which distinguishes organisms, there is the disorderly or chaotic heterogeneity, into which a loose mass of inorganic matter lapses; and at present no reason has been given why the homogeneous germ of a plant or animal should not lapse into the disorderly instead of the orderly heterogeneity. But by pursuing still further the line of argument hitherto followed we shall find a reason.

      We have seen that the instability of homogeneous aggregates in general, and of organic ones in particular, is consequent on the various ways and degrees in which their constituent parts are exposed to the disturbing forces brought to bear on them: their parts are differently acted upon, and therefore become different. Manifestly, then, a rationale of the special changes which a germ undergoes, must be sought in the particular relations which its several parts bear to each other and to their environment. However it may be masked, we may suspect the fundamental principle of organization to be, that the many like units forming a germ acquire those kinds and degrees of unlikeness which their respective positions entail.

      Take a mass of unorganized but organizable matter—either the body of one of the lowest living forms, or the germ of one of the higher. Consider its circumstances. It is immersed in water or air; or it is contained within a parent organism. Wherever placed, however, its outer and inner parts stand differently related to surrounding existences—nutriment, oxygen, and the various stimuli. But this is not all. Whether it lies quiescent at the bottom of the water, whether it moves through the water preserving some definite attitude, or whether it is in the inside of an adult; it equally results that certain parts of its surface are more directly exposed to surrounding agencies than other parts—in some cases more exposed to light, heat, or oxygen, and in others to the maternal tissues and their contents. The destruction of its original equilibrium is therefore certain. It may take place in one of two ways. Either the disturbing forces may be such as to overbalance the affinities of the organic elements, in which case there results that chaotic heterogeneity known as decomposition; or, as is ordinarily the case, such changes are induced as do not destroy the organic compounds, but only modify them: the parts most exposed to the modifying forces being

Скачать книгу