The Complete Essays by Herbert Spencer (Vol. 1-3). Spencer Herbert

Чтение книги онлайн.

Читать онлайн книгу The Complete Essays by Herbert Spencer (Vol. 1-3) - Spencer Herbert страница 26

Автор:
Серия:
Издательство:
The Complete Essays by Herbert Spencer (Vol. 1-3) - Spencer Herbert

Скачать книгу

not wholly improbable, requires millions of years to reach our earth—to distances for whose measurement the dimensions (the distance of Sirius, or the calculated distances of the binary stars in Cygnus and the Centaur) of our nearest stratum of fixed stars scarcely suffice."

      In this confused sentence there is implied a belief, that the distances of the nebulæ from our galaxy of stars as much transcend the distances of our stars from one another, as these interstellar distances transcend the dimensions of our planetary system. Just as the diameter of the Earth's orbit, is a mere point when compared with the distance of our Sun from Sirius; so is the distance of our Sun from Sirius, a mere point when compared with the distance of our galaxy from those far-removed galaxies constituting nebulæ. Observe the consequences of this assumption.

      Throughout the above argument, it is tacitly assumed that differences of apparent magnitude among the stars, result mainly from differences of distance. On this assumption the current doctrines respecting the nebulæ are founded; and this assumption is, for the nonce, admitted in each of the foregoing criticisms. From the time, however, when it was first made by Sir W. Herschel, this assumption has been purely gratuitous; and it now proves to be inadmissible. But, awkwardly enough, its truth and its untruth are alike fatal to the conclusions of those who argue after the manner of Humboldt. Note the alternatives.

      On the one hand, what follows from the untruth of the assumption? If apparent largeness of stars is not due to comparative nearness, and their successively smaller sizes to their greater and greater degrees of remoteness, what becomes of the inferences respecting the dimensions of our sidereal system and the distances of nebulæ? If, as has lately been shown, the almost invisible star 61 Cygni has a greater parallax than [Greek: a] Cygni, though, according to an estimate based on Sir W. Herschel's assumption, it should be about twelve times more distant—if, as it turns out, there exist telescopic stars which are nearer to us than Sirius; of what worth is the conclusion that the nebulæ are very remote, because their component luminous masses are made visible only by high telescopic powers? Clearly, if the most brilliant star in the heavens and a star that cannot be seen by the naked eye, prove to be equidistant, relative distances cannot be in the least inferred from relative visibilities. And if so, nebulæ may be comparatively near, though the starlets of which they are made up appear extremely minute.

      On the other hand, what follows if the truth of the assumption be granted? The arguments used to justify this assumption in the case of the stars, equally justify it in the case of the nebulæ. It cannot be contended that, on the average, the apparent sizes of the stars indicate their distances, without its being admitted that, on the average, the apparent sizes of the nebulæ indicate their distances—that, generally speaking, the larger are the nearer and the smaller are the more distant. Mark, now, the necessary inference respecting their resolvability. The largest or nearest nebulæ will be most easily resolved into stars; the successively smaller will be successively more difficult of resolution; and the irresolvable ones will be the smallest ones. This, however, is exactly the reverse of the fact. The largest nebulæ are either wholly irresolvable, or but partially resolvable under the highest telescopic powers; while large numbers of quite small nebulæ are easily resolved by far less powerful telescopes. An instrument through which the great nebula in Andromeda, two and a half degrees long and one degree broad, appears merely as a diffused light, decomposes a nebula of fifteen minutes diameter into twenty thousand starry points. At the same time that the individual stars of a nebula eight minutes in diameter are so clearly seen as to allow of their number being estimated, a nebula covering an area five hundred times as great shows no stars at all! What possible explanation of this can be given on the current hypothesis?

      Yet a further difficulty remains—one which is, perhaps, still more obviously fatal than the foregoing. This difficulty is presented by the phenomena of the Magellanic clouds. Describing the larger of these, Sir John Herschel says:—

      "The Nubecula Major, like the Minor, consists partly of large tracts and ill-defined patches of irresolvable nebula, and of nebulosity in every stage of resolution, up to perfectly resolved stars like the Milky Way, as also of regular and irregular nebulæ properly so called, of globular clusters in every stage of resolvability, and of clustering groups sufficiently insulated and condensed to come under the designation of 'clusters of stars.'"—Cape Observations, p. 146.

      In his Outlines of Astronomy, Sir John Herschel, after repeating this description in other words, goes on to remark that—

      "This combination of characters, rightly considered, is in a high degree instructive, affording an insight into the probable comparative distance of stars and nebulæ, and the real brightness of individual stars as compared with one another. Taking the apparent semidiameter of the nubecula major at three degrees, and regarding its solid form as, roughly speaking, spherical, its nearest and most remote parts differ in their distance from us by a little more than a tenth part of our distance from its center. The brightness of objects situated in its nearer portions, therefore, cannot be much exaggerated, nor that of its remoter much enfeebled, by their difference of distance; yet within this globular space, we have collected upwards of six hundred stars of the seventh, eighth, ninth, and tenth magnitudes, nearly three hundred nebulæ, and globular and other clusters, of all degrees of resolvability, and smaller scattered stars innumerable of every inferior magnitude, from the tenth to such as by their multitude and minuteness constitute irresolvable nebulosity, extending over tracts of many square degrees. Were there but one such object, it might be maintained without utter improbability that its apparent sphericity is only an effect of foreshortening, and that in reality a much greater proportional difference of distance between its nearer and more remote parts exists. But such an adjustment, improbable enough in one case, must be rejected as too much so for fair argument in two. It must, therefore, be taken as a demonstrated fact, that stars

Скачать книгу