Genetic Disorders and the Fetus. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Genetic Disorders and the Fetus - Группа авторов страница 89

Genetic Disorders and the Fetus - Группа авторов

Скачать книгу

Verkerk AJ, Pieretti M, Sutcliffe JS, et al. Identification of a gene (FMR‐1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 1991; 65:905.

      773 773. Paulson H. Repeat expansion diseases. Handb Clin Neurol 2018; 147:105.

      774 774. Lehesjoki A‐E, Kälviäinen R. Progressive myoclonic epilepsy type 1. GeneReviews® [internet]. Seattle (WA): University of Washington, Seattle, 1993–2020, 2004 Jun 24 [updated 2020 Jul 2].

      775 775. Ishikawa K, Dürr A, Klopstock T, et al. Pentanucleotide repeats at the spinocerebellar ataxia type 31 (SCA31) locus in Caucasians. Neurology 2011; 77:1853.

      776 776. Corbett MA, Kroes T, Veneziano L, et al. Intronic ATTTC repeat expansions in STARD7 in familial adult myoclonic epilepsy linked to chromosome 2. Nat Commun 2019; 10:4920.

      777 777. Campuzano V, Montermini L, Molot MD, et al. Friedreich's ataxia: autosomal recessive disease caused by an intronic GA triplet repeat expansion. Science 1996; 271:1423.

      778 778. Yum K, Wang ET, Kalsotra A. Myotonic dystrophy: disease repeat range, penetrance, age of onset, and relationship between repeat size and phenotypes. Curr Opin Genet Dev 2017; 44:30.

      779 779. Jaspert A, Fahsold R, Grehl H, et al. Myotonic dystrophy: correlation of clinical symptoms with the size of the CTG trinucleotide repeat. J Neurol 1995; 242:99.

      780 780. Schoser B. Myotonic dystrophy type 2. GeneReviews® [internet]. Seattle (WA): University of Washington, Seattle, 1993–2020, 2006 Sep 21 [updated 2020 Mar 19].

      781 781. Higgs C, Hilbert JE, Wood L, et al. Reproductive cancer risk factors in women with myotonic dystrophy (DM): survey data from the US and UK DM registries. Front Neurol 2019; 10:1071.

      782 782. Alsaggaf R, Pfeiffer RM, Wang Y, et al. Diabetes, metformin and cancer risk in myotonic dystrophy type 1. Int J Cancer 2020; 147:785.

      783 783. Myers RH, MacDonald ME, Koroshetz WJ et al. De novo expansion of a (CAG)n repeat in sporadic Huntington's disease. Ann Neurol 1992; 32:707.

      784 784. Trottier Y, Briancalana V, Mandel JL. Instability of CAG repeats in Huntington's disease: relation to parental transmission and age of onset. J Med Genet 1994; 31:377.

      785 785. Joosten IBT, Hellebrekers DMEI, de Greef BTA, et al. Parental repeat length instability in myotonic dystrophy type 1 pre‐ and protomutations. Eur J Hum Genet 2020; 28(7):956.

      786 786. Margolesky J, Starosta‐Rubenstein S, Verma A, et al. A co‐occurrence of trinucleotide repeat disorders. Mov Disord Clin Pract 2018; 5(6):643.

      787 787. McFarland KN, Liu J, Landrian I, et al. Paradoxical effects of repeat interruptions on spinocerebellar ataxia type 10 expansions and repeat instability. Eur J Hum Genet 2013; 21:1272.

      788 788. Cumming SA, Hamilton MJ, Robb Y, et al. De novo repeat interruptions are associated with reduced somatic instability and mild or absent clinical features in myotonic dystrophy type 1. Eur J Hum Genet 2018; 26(11):1635.

      789 789. Pešović J, Perić S, Brkušanin M, et al. Repeat interruptions modify age at onset in myotonic dystrophy type 1 by stabilizing DMPK expansions in somatic cells. Front Genet 2018; 9:601.

      790 790. Laffita‐Mesa JM, Rodriguez Pupo JM, Moreno Sera R, et al. De novo mutations in ataxin‐2 gene and ALS risk. PLoS One 2013; 8:e70560.

      791 791. Beaudin M, Matilla‐Dueñas A, Soon B, et al. The classification of autosomal recessive cerebellar ataxias: a consensus statement from the society for research on the cerebellum and ataxias task force. Cerebellum 2019; 18(6):1098.

      792 792. Robberecht W, Philips T. The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci 2013; 14:248.

      793 793. Majounie E, Renton AE, Mok K, et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross‐sectional study. Lancet Neurol 2012; 11:323.

      794 794. Beck J, Poulter M, Hensman D, et al. Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. Am J Hum Genet 92:345.

      795 795. Williams KL, Fifita JA, Vucic S, et al. Pathophysiological insights into ALS with C9orf72 expansions. J Neurol Neurosurg Psychiatry 2013; 84:931.

      796 796. Lindquist SG, Duno M, Batbayli M, et al. Corticobasal and ataxia syndromes widen the spectrum of C9orf72 hexanucleotide expansion disease. Clin Genet 2013; 83:279.

      797 797. van der Zee J, Gijselinck I, Dillen L, et al. A pan‐European study of the C9orf72 repeat associated with FTLD: geographic prevalence, genomic instability, and intermediate repeats. Hum Mutat 2013; 34:363.

      798 798. Devenney EM, Ahmed RM, Halliday G, et al. Psychiatric disorders in C9orf72 kindreds: study of 1,414 family members. Neurology 2018; 91:e.1498.

      799 799. Esselin F, Mouzat K, Polge A, et al. Clinical phenotype and inheritance in patients with C9ORF72 hexanucleotide repeat expansion: results from a large French cohort. Front Neurosci 2020; 14:316.

      800 800. Shi D, Xu J, Niu W, et al. Live births following preimplantation genetic testing for dynamic mutation diseases by karyomapping: a report of three cases. J Assist Reprod Genet 2020; 37:539.

      801 801. Fernández RM, Lozano‐Arana MD, Sánchez B, et al. Preimplantation genetic diagnosis for myotonic dystrophy type 1 and analysis of the effect of the disease on the reproductive outcome of the affected female patients. Biomed Red Int 2017; 2017:9165363.

      802 802. Milunsky A, Baldwin C, Milunsky J. Molecular genetics and prenatal diagnosis. In: Milunsky A, Milunsky J, eds. Genetic disorders and the fetus: diagnosis, prevention and treatment, 7th edn. Hoboken, NJ: John Wiley & Sons, 2016: 380.

      803 803. Gerbrands LC, Haarman EG, Hankel MA, et al. Cystic fibrosis and Silver‐Russell syndrome due to a partial maternal isodisomy of chromosome 7. Clin Case Rep 2017; 5(10):1697.

      804 804. Sotomayor FV, Abarca‐Barriga HH. Homozygous deletion of the CFTR gene caused by interstitial maternal isodisomy in a Peruvian child with cystic fibrosis. J Pediatr Genet 2019; 8(3):147.

      805 805. Ammerpohl O, Martín‐Subero JI, Richter J, et al. Hunting for the 5th base: techniques for analyzing DNA methylation. Biochim Biophys Acta 2009; 1790:847.

      806 806. Dedeurwaerder S, Defrance M, Calonne E, et al. Evaluation of the Infinium methylation 450K technology. Epigenomics 2011; 3:771.

      807 807. Begemann M, Rezwas FI, Beygo J, et al. Maternal variants in NLRP and other maternal effect proteins are associated with multilocus imprinting disturbance in offspring. J Med Genet 2018; 55:497.

      808 808. Yauy K, de Leeuw N, Yntema HG, et al. Accurate detection of clinically relevant uniparental disomy from exome sequencing data. Genet Med 2020; 22:803.

      809 809. Bhoj EJ, Rajabi F, Baker SW, et al. Imprinted genes in clinical exome sequencing: Review of 538 cases and exploration of mouse‐human conservation in the identification of novel human disease loci. Eur J Med Genet 2020; 63:103903.

      810 810. del Gaudio D, Shinawi M, Astbury C, et al. Diagnostic testing for uniparental disomy: a points to consider statement from the American College of Medical Genetics and Genomics (ACMG). Genet Med 2020; 22:1133.

      811 811. Court F,

Скачать книгу