Bovine Reproduction. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Bovine Reproduction - Группа авторов страница 168

Bovine Reproduction - Группа авторов

Скачать книгу

of leaner heifers that reach puberty at older ages [79]. Therefore, at some point, it becomes counterproductive to select replacement heifers on the basis of low RFI. This is because reproduction has been reported to be five times more important to commercial cattle producers than growth rate or milk production [80], and heifers that calve early in their first calving season tend to calve early throughout their lives and have greater lifetime calf production [81].

      Precocious puberty (<300 days of age) in beef heifers can be induced by early weaning and continuous feeding of a high‐concentrate diet. As in the case of progestin administration, puberty is preceded by increasing frequency of LH pulses [82]. Heifers experiencing induced precocious puberty weigh significantly less at puberty than their traditionally weaned and fed counterparts [82]. Furthermore, it has been determined that feeding a high‐concentrate diet from 126 days (after weaning at 112 days) through 196 days was as effective at inducing precocious puberty as continuous high‐concentrate feeding [83]. Taken together, data indicate that high preweaning growth rate and heavy weaning weights are associated with early puberty and heavier weight at puberty [84].

      In dairy heifers it appears that factors including colostrum intake, preweaning growth rate, and body composition influence age at puberty. As an example of the effect of preweaning (0–42 days) growth rate, heifers fed an intensive milk replacer diet were 15 days younger at first pregnancy and 14 days younger at calving than heifers fed a conventional milk replacer diet [96]. The conventional diet consisted of a standard milk replacer (21.5% crude protein [CP], 21.5% fat) fed at 1.2% of BW on a dry matter basis and starter grain (19.9% CP) to attain 0.45 kg of daily gain. The intensive diet consisted of a high‐protein milk replacer (30.6% CP, 16.1% fat) fed at 2.1% of BW on a dry matter basis and starter grain (24.3% CP) to achieve 0.68 kg of daily gain [96].

      Finally, one should bear in mind that consumption of certain feedstuffs may actually be deleterious to attainment of puberty. One such example is endophyte‐infected tall fescue. Cattle consuming this forage are prone to decreased calving and growth rates, delayed onset of puberty, and impaired function of corpora lutea [97].

      A study by Cooke et al. [98] evaluated the influence of temperament on various performance measures including age at puberty in Bos indicus heifers. Bos indicus heifers classified as “excitable” (based on chute exit velocity) had reduced growth, increased plasma cortisol concentrations, and hindered puberty attainment compared to heifers classified as “adequate” or less excitable temperament.

      Unlike other domestic species (sheep, goats, swine), exposure to a bull has no effect on the incidence of precocious puberty [99].

      Walsh et al. [100] reported that maternal age affected the number of antral follicles detectable by ultrasonography in the ovaries of the daughters at a year of age. Holstein heifers that were born to heifers had fewer antral follicles detectable by ultrasonography at a year of age than Holstein heifers that were born to multiparous cows. Similarly, Angus heifers with diminished numbers of antral follicles detectable by ultrasonography (14.5 ± 0.8 follicles) had dams that were younger than the dams of Angus heifers with increased numbers of antral follicles (31.1 ± 0.8 follicles) [101]. These studies suggest that the lesser number of antral follicles detectable by ultrasonography in heifers born to primiparous dams is due to fewer ovarian follicle reserves. Selecting replacement heifers from mature dams may result in daughters with greater fertility and reproductive longevity; however, further research is necessary to determine if interactions between size of the ovarian follicle reserve and age at puberty influence fertility and reproductive longevity in replacement heifers.

      The rearing of replacement heifers is a major financial investment for both beef and dairy cattle producers. The investment expenses do not begin to be recovered until after the first calf is weaned and sold, or in the case of dairy heifers, the onset of lactation, so having heifers calve at an optimal age is paramount to enterprise profitability. For this to occur it is essential that operators know when their heifers have attained puberty and become eligible for breeding. This is most critical for herds using a restricted breeding season.

      Observation of signs of estrus can predict onset of puberty but is impractical for application to larger herds. Another observational tool, reproductive tract score (RTS), is a useful predictor of heifer fertility [102]. There is a positive correlation between high RTSs in heifers and percentage of heifers conceiving by artificial insemination [103]. RTS is a subjective estimate of sexual maturity based on ovarian follicular development and diameter of the uterine horns. An RTS of 1 is assigned to heifers with infantile tracts, as indicated by small, toneless uterine horns and small ovaries devoid of significant structures. Heifers with an RTS of 1 are likely the furthest from puberty at the time of examination. Heifers assigned an RTS of 2 are thought to be closer to puberty than those scoring 1, due primarily to larger uterine horns and ovaries. Those heifers assigned an RTS of 3 are thought to be on the verge of estrous cyclicity based on uterine tone and palpable follicles. Heifers assigned a score of 4 are considered to be cycling, as indicated by uterine tone and size, coiling of the uterine horns, and presence of a preovulatory‐sized follicle. Heifers assigned an RTS of 4 do not have an easily distinguished corpus luteum. Heifers with an RTS of 5 are similar

Скачать книгу