Bovine Reproduction. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Bovine Reproduction - Группа авторов страница 63

Bovine Reproduction - Группа авторов

Скачать книгу

temperature is increased (regardless of the cause), sperm morphology is generally unaffected initially (for an interval corresponding to epididymal transit time) but subsequently declines. In some studies [29, 33], sperm in the epididymis at the time of scrotal heating were morphologically abnormal when collected soon after heating. In another study [30], changes in these sperm were manifest only after they were frozen, thawed, and incubated. Sperm morphology usually returns to pretreatment values within approximately six weeks after the thermal insult. However, a prolonged and/or severe increase in testicular temperature will increase the interval for recovery. In general, the decrease in semen quality following increased testicular temperature is related to severity and duration of the thermal insult.

      1 1 Cates W. (1975) Observations on scrotal circumference and its relationship to classification of bulls. In: Proceedings of the Annual Meeting of the Society for Theriogenology. Cheyenne, WY, pp. 1–15.

      2 2 Waites, G. (1970). Temperature regulation and the testis. In: The Testis, vol. I (eds. A.D. Johnson, W.R. Gomes and N.L. Van Demark), 241–279. New York;: Academic Press.

      3 3 Dahl, E. and Herrick, J. (1959). A vascular mechanism of maintaining testicular temperature by counter‐current exchange. Surg. Gynecol. Obstet. 108: 697–705.

      4 4 Setchell, B. (1978). The scrotum and thermoregulation. In: The Mammalian Testis (ed. B. Setchell), 90–108. Ithaca: Cornell University Press.

      5 5 Kastelic, J., Rizzoto, G., and Thundathil, J. (2018). Review: testicular vascular cone development and its association with scrotal thermoregulation, semen quality and sperm production in bulls. Animal 12: s133–s141.

      6 6 Cook, R., Coulter, G., and Kastelic, J. (1994). The testicular vascular cone, scrotal thermoregulation, and their relationship to sperm production and seminal quality in beef bulls. Theriogenology 41: 653–671.

      7 7 Brito, L., Barth, A., Wilde, R., and Kastelic, J. (2012). Testicular vascular cone development and its association with scrotal temperature, semen quality, and sperm production in beef bulls. Anim. Reprod. Sci. 134: 135–140.

      8 8 Brito, L., Silva, A., Barbosa, R., and Kastelic, J. (2004). Testicular thermoregulation in Bos indicus, crossbred and Bos taurus bulls: relationship with scrotal, testicular vascular cone and testicular morphology, and effects on semen quality and sperm production. Theriogenology 61: 511–528.

      9 9 Blazquez, N., Mallard, G., and Wedd, S. (1988). Sweat glands of the scrotum of the bull. J. Reprod. Fertil. 83: 673–677.

      10 10 Waites, G. and Voglmayr, J. (1963). The functional activity and control of the apocrine sweat glands of the scrotum of the ram. Aust. J. Agric. Res. 14: 839–851.

      11 11 Waites, G. (1962). The effect of heating the scrotum of the ram on respiration and body temperature. Q. J. Exp. Physiol. 47: 314–323.

      12 12 Kastelic, J., Coulter, G., and Cook, R. (1995). Scrotal surface, subcutaneous, intratesticular, and intraepididymal temperatures in bulls. Theriogenology 44: 147–152.

      13 13 Gunn, S. and Gould, T. (1975). Vasculature of the testes and adnexa. In: Handbook of Physiology, Section 7, vol. 5 (ed. R.O. Greep), 117–142. Washington, DC: American Physiological Society.

      14 14 Kastelic, J., Cook, R., and Coulter, G. (1997). Contribution of the scrotum, testes, and testicular artery to scrotal/testicular thermoregulation in bulls at two ambient temperatures. Anim. Reprod. Sci. 45: 255–261.

      15 15 Kastelic, J., Cook, R., and Coulter, G. (1996). Contribution of the scrotum and testes to scrotal and testicular thermoregulation in bulls and rams. J. Reprod. Fertil. 108: 81–85.

      16 16 Coulter, G., Cook, R., and Kastelic, J. (1997). Effects of dietary energy on scrotal surface temperature, seminal quality, and sperm production in young beef bulls. J. Anim. Sci. 75: 1048–1052.

      17 17 Barros Adwell, C., Brito, L., Oba, E. et al. (2018). Arterial blood flow is the main source of testicular heat in bulls and higher ambient temperatures significantly increase testicular blood flow. Theriogenology 116: 12–16.

      18 18 Waites, G. and Setchell, B. (1964). Effect of local heating on blood flow and metabolism in the testis of the conscious ram. Reproduction 8: 339–349.

      19 19 Kastelic, J., Wilde, R., Rizzoto, G., and Thundathil, J. (2017). Hyperthermia and not hypoxia may reduce sperm motility and morphology following testicular hyperthermia. Vet. Med. 62: 437–442.

      20 20 Kastelic, J., Wilde, R., Bielli, A. et al. (2019). Hyperthermia is more important than hypoxia as a cause of disrupted spermatogenesis and abnormal sperm. Theriogenology 131: 177–181.

      21 21 Rizzoto, G., Hall, C., Tyberg, J. et al. (2018). Increased testicular blood flow maintains oxygen delivery and avoids testicular hypoxia in response to reduced oxygen content in inspired air. Sci. Rep. 8: 10905.

      22 22 Rizzoto, G., Hall, C., Tyberg, J. et al. (2019). Testicular hyperthermia increases blood flow that maintains aerobic metabolism in rams. Reprod. Fertil. Dev. 31: 683–688.

      23 23 Rizzoto, G., Ferreira, J., Mogollón Garcia, H. et al. (2020). Short‐term testicular warming under anaesthesia causes similar increases in testicular blood flow in Bos taurus versus Bos indicus bulls, but no apparent hypoxia. Theriogenology 15: 94–99.

      24 24 Coulter G. (1988) Thermography of bull testes. In: Proceedings of the 12th Technical Conference on Artificial Insemination and Reproduction. Columbia, MO: National Association of Animal Breeders, pp. 58–63.

      25 25 Purohit, R., Hudson, R., Riddell, M. et al. (1985). Thermography of the bovine scrotum. Am. J. Vet. Res. 46: 2388–2392.

      26 26 Lunstra, D. and Coulter, G. (1997). Relationship between scrotal infrared temperature patterns and natural‐mating fertility in beef bulls. J. Anim. Sci. 75: 767–774.

      27 27 Skinner, J. and Louw, G. (1966). Heat stress and spermatogenesis in Bos indicus and Bos taurus cattle. J. Appl. Physiol. 21: 1784–1790.

      28 28 Johnston, J., Naelapaa, H., and Frye, J. (1963). Physiological responses of Holstein, Brown Swiss and Red Sindhi crossbred bulls exposed to high temperatures and humidities. J. Anim. Sci. 22: 432–436.

      29 29 Wildeus, S. and Entwistle, K. (1983). Spermiogram and sperm reserves in hybrid Bos indicus × Bos taurus bulls after scrotal insulation. J. Reprod. Fertil. 69: 711–716.

      30 30 Vogler, C., Saacke, R., Bame, J. et al. (1991). Effects of scrotal insulation on viability characteristics of cryopreserved bovine semen. J. Dairy Sci. 74: 3827–3835.

      31 31 Vogler, C., Bame, J., DeJarnette, J. et al. (1993). Effects of elevated testicular temperature on morphology characteristics of ejaculated spermatozoa in the bovine. Theriogenology 40: 1207–1219.

      32 32 Barth, A. and Bowman, P. (1994). The sequential appearance of sperm abnormalities after scrotal insulation or dexamethasone treatment in bulls. Can. Vet. J. 35: 93–102.

      33 33 Kastelic, J., Cook, R., Coulter, G., and Saacke, R. (1996). Insulating the scrotal neck affects semen quality and scrotal/testicular temperatures in the bull. Theriogenology 45: 935–942.

      34 34 Bedford, J. (1991). Effects of elevated temperature on the epididymis and testis: experimental studies. In: Temperature and Environmental Effects on the Testis (ed. A.W. Zorgniotti), 19–32. New York;: Plenum Press.

      35 35 Waites, G. and Setchell,

Скачать книгу