.

Чтение книги онлайн.

Читать онлайн книгу - страница 10

Автор:
Жанр:
Серия:
Издательство:
 -

Скачать книгу

University

      It is nowadays apparent that the chemistry of the future will involve the exploitation of biomass‐based renewable materials, the currently available stock of fossil resources being doomed to exhaustion. This transition may indeed bring about several benefits because having recourse to renewable resources should limit the impact human activities are having on climate change.

      Currently, the use of biomass by mankind is limited to addressing a few specific needs, notably fulfilling the feed demand and supplementing energy production in addition to the fossil fuel portfolio. The impact of these activities on the net primary production (NPP) of terrestrial and marine biomass can be accounted for by considering the human appropriation of net primary production (HANPP) parameter, which corresponds to all the human alterations of photosynthetic production in the ecosystems. This constant HANPP represents a significant fraction of the NPP and has a huge impact on ecosystems because it reduces the amount of energy available to other species, influences biodiversity, and alters water, energy, and carbon flows within food webs, also modifying the distribution of resources. In the prospected future scenario of a massive use in industry, biomass will at some point become a scarce resource, and its utilization should be considered wisely, accordingly. In particular, the entire substitution of fossil fuels with biomass for energy production purposes is unrealistic because of the huge amount of biomass that should be devoted at this end. Furthermore, one may argue if this kind of application is the best use possible of biomass, fully exploiting its characteristics in terms of chemical composition.

      Accordingly, there is an increasing interest in developing suitable techniques to tackle the valorization of biomass to produce chemicals and this area is expected to further expand in the future. Along the same line, bio‐based waste materials, to be included in a circular economy perspective, can likewise contribute significantly. Independently from the actual biomass employed, this is a challenging area because inhomogeneous materials with variable composition must be processed with tailored technologies. The book “Biomass Valorization: Sustainable Methods for the Production of Chemicals” is intended to present the state of the art of the different strategies available nowadays to convert biomass into useful building blocks/commodity chemicals.

      Each chapter features an introductory section, detailing the core details of the described technology and showcasing the typical chemical pathways that can be activated by having recourse to it. Next, peculiar advantages and limitations of the described strategy in the processing of biomass are described. Finally, relevant examples from the recent literature are reported, with attention to the organic chemistry perspective, also indicating how the different approaches can modify and valorize the native functionalities present in the starting biomass.

      After an introductory section (Chapter 1), intended to set the stage and describe how biomass can contribute to the production of chemicals, the rest of the book has been organized according to the diverse approaches that can be exploited, also highlighting the potential, challenges, and innovative solutions associated with them. Biomass valorization processes have been explored using catalytic routes, including acid catalysis (Chapter 2), base catalysis (Chapter 3), metal catalysis (Chapter 4), and biocatalysis (Chapter 5). Various thermal strategies that can be applied for the valorization of biomass involve pyrolysis (Chapter 6) and thermochemical–biological hybrid processes (Chapter 7). Different advanced/unconventional strategies have also shown great promise, such as those involving electrochemical (Chapter 8) and photochemical (Chapter 9) means, microwave treatment (Chapter 10), ultrasound‐assisted approaches (Chapter 11), and mechanochemical approaches (Chapter 12). As a final contribution, biomass processing from an industrial perspective is assessed (Chapter 13).

      There is no doubt that in the future, the production of chemicals will be based on the exploitation of biomass and the time has come to find the best methods to address this challenge and put it into practice.

      November 2020

      Chiara Samorì, University of Bologna, Italy

      Davide Ravelli, University of Pavia, Italy

       Layla Filiciotto, Evan Pfab, and Rafael Luque

       Universidad de Córdoba, Campus de Rabanales, Departamento de Quimica Organica, Edificio Marie Curie (C‐3), Ctra Nnal IV‐A, Km 396, Córdoba, Spain

      The impact that sustainability could have on the chemical industry is best reflected in the magnitude of the chemical industry itself. Today, the chemical industry generates approximately $4 trillion in global sales with the production of more than 95% of all commodities [2].

Скачать книгу