Polysaccharides. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Polysaccharides - Группа авторов страница 41

Polysaccharides - Группа авторов

Скачать книгу

Luo, H. et al., Porous nanoplate-like hydroxyapatite–sodium alginate nanocomposite scaffolds for potential bone tissue engineering. Mater. Technol., 32, 2, 78–84, 2017.

      93. Venkatesan, J. et al., Alginate composites for bone tissue engineering: A review. Int. J. Biol. Macromol., 72, 269–281, 2015.

      94. Bhatia, S.N. et al., Cell and tissue engineering for liver disease. Sci. Transl. Med., 6, 245, 245sr2, 2014.

      95. Kumari, J., Karande, A.A., Kumar, A., Combined effect of cryogel matrix and temperature-reversible soluble–insoluble polymer for the development of in vitro human liver tissue. ACS Appl. Mater. Interfaces, 8, 1, 264–277, 2016.

      96. Li, L., Zhang, Y., Pan, X., Preparation and Characterization of Alginate–Chitosan Microcapsule for Hepatocyte Culture, in: Cell Microencapsulation: Methods and Protocols, E.C. Opara, (Ed.), pp. 199–206, Springer New York, New York, NY, 2017.

      97. Palakkan, A.A. et al., Liver tissue engineering and cell sources: Issues and challenges. Liver Int., 33, 5, 666–676, 2013.

      98. Climov, M. et al., Natural Biomaterials for Skin Tissue Engineering, in: Skin Tissue Engineering and Regenerative Medicine, M.Z. Albanna, and J.H. Holmes, (Eds.), pp. 145–161, Elsevier, Amsterdam, 2016.

      99. Gong, Y. et al., Preparation of alginate membrane for tissue engineering. J. Polym. Eng., 36, 4, 363, 2015.

      100. Dashtdar, H. et al., Ultra-structural changes and expression of chondrogenic and hypertrophic genes during chondrogenic differentiation of mesenchymal stromal cells in alginate beads. PeerJ, 4, e1650–e1650, 2016.

      102. Park, H. et al., Alginate hydrogels modified with low molecular weight hyaluronate for cartilage regeneration. Carbohydr. Polym., 162, 100–107, 2017.

      103. Stölzel, K. et al., Immortalised human mesenchymal stem cells undergo chondrogenic differentiation in alginate and PGA/PLLA scaffolds. Cell Tissue Bank., 16, 1, 159–170, 2015.

      104. Pumberger, M. et al., Synthetic niche to modulate regenerative potential of MSCs and enhance skeletal muscle regeneration. Biomaterials, 99, 95–108, 2016.

      105. Stilhano, R.S. et al., Injectable alginate hydrogel for enhanced spatiotemporal control of lentivector delivery in murine skeletal muscle. J. Controlled Release, 237, 42–49, 2016.

      106. Diniz, I.M.A. et al., Gingival mesenchymal stem cell (GMSC) delivery system based on RGD-coupled alginate hydrogel with antimicrobial properties: A novel treatment modality for peri-implantitis. J. Prosthodont.: Official Journal of the American College of Prosthodontists, 25, 2, 105–115, 2016.

      107. Yang, S. et al., Polypyrrole/alginate hybrid hydrogels: Electrically conductive and soft biomaterials for human mesenchymal stem cell culture and potential neural tissue engineering applications. Macromol. Biosci., 16, 11, 1653–1661, 2016.

      108. Shahriari, D. et al., Characterizing the degradation of alginate hydrogel for use in multilumen scaffolds for spinal cord repair. J. Biomed. Mater. Res. Part A, 104, 3, 611–619, 2016.

      109. Agarwal, A. et al., Polymeric materials for chronic wound and burn dressings, in: Advanced Wound Repair Therapies, D. Farrar, (Ed.), pp. 186–208, Woodhead Publishing, Sawston, Cambridge, 2011.

      110. Ip, M., Antimicrobial dressings, in: Advanced Wound Repair Therapies, D. Farrar, (Ed.), pp. 416–449, Woodhead Publishing, Sawston, Cambridge, 2011.

      111. Wietlisbach, C.M., Wound Care, in: Fundamentals of Hand Therapy, Second Edition, C. Cooper, (Ed.), pp. 206–218, Mosby, St. Louis, 2014.

      112. Wüstenberg, T., Cellulose, in: Cellulose and Cellulose Derivatives in the Food Industry, T. Wüstenberg, (Ed.), pp. 91–142, Wiley VCH, Weinheim, 2015.

      113. Dourado, F. et al., Celluloses as Food Ingredients/Additives: Is There a Room for BNC?, in: Bacterial Nanocellulose, M. Gama, F. Dourado, S. Bielecki, (Eds.), pp. 123–133, Elsevier, Amsterdam, 2016.

      114. Wüstenberg, T., Microcrystalline Cellulose, in: Cellulose and Cellulose Derivatives in the Food Industry, T. Wüstenberg, (Ed.), pp. 143–184, Wiley VCH, Weinheim, 2015.

      115. Wüstenberg, T., Fundamentals of Water-Soluble Cellulose Ethers and Methylcellulose, in: Cellulose and Cellulose Derivatives in the Food Industry, T. Wüstenberg, (Ed.), pp. 185–274, Wiley VCH, Weinheim, 2015.

      116. Wüstenberg, T., Ethylcellulose, in: Cellulose and Cellulose Derivatives in the Food Industry, T. Wüstenberg, (Ed.), pp. 275–318, Wiley VCH, Weinheim, 2015.

      117. Wüstenberg, T., Hydroxypropylcellulose, in: Cellulose and Cellulose Derivatives in the Food Industry, T. Wüstenberg, (Ed.), pp. 319–342, Wiley VCH, Weinheim, 2015.

      118. Wüstenberg, T., Hydroxypropylmethylcellulose, in: Cellulose and Cellulose Derivatives in the Food Industry, T. Wüstenberg, (Ed.), pp. 343–378, Wiley VCH, Weinheim, 2015.

      119. Gutiérrez, T.J., Chitosan Applications for the Food Industry, in: Chitosan: Derivatives, Composites and Applications, S.I. Shakeel Ahmed, (Ed.), pp. 183–232, Scrivener Publishing LLC, Beverly, Mass., USA, 2017.

      120. Wardy, W. et al., Chitosan–soybean oil emulsion coating affects physico-functional and sensory quality of eggs during storage. LWT—Food Sci. Technol., 44, 10, 2349–2355, 2011.

      121. Perdones, A. et al., Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biol. Technol., 70, 32–41, 2012.

      123. Synowiecki, J. et al., Immobilization of enzymes on krill chitin activated by formaldehyde. Biotechnol. Bioeng., 24, 8, 1871–1876, 1982.

      124. Han, X.-Q. and Shahidi, F., Extraction of harp seal gastric proteases and their immobilization on chitin. Food Chem., 52, 1, 71–76, 1995.

      125. Shi, W. and Ma, Z., Amperometric glucose biosensor based on a triangular silver nanoprisms/ chitosan composite film as immobilization matrix. Biosens. Bioelectron., 26, 3, 1098–1103, 2010.

      126. Dai, H. et al., Biocompatible electrochemiluminescent biosensor for choline based on enzyme/ titanate nanotubes/chitosan composite modified electrode. Biosens. Bioelectron., 25, 6, 1414– 1419, 2010.

      127. Lin, H. et al., Detection of pathogen Escherichia coli O157:H7 with a wireless magnetoelastic-sensing device amplified by using chitosan-modified magnetic Fe3O4 nanoparticles. Sens. Actuators B: Chem., 147, 1, 343–349, 2010.

      128. Diaconu, M., Litescu, S.C., Radu, G.L., Laccase–MWCNT–chitosan biosensor—A new tool for total polyphenolic content evaluation from in vitro cultivated plants. Sens. Actuators B: Chem., 145, 2, 800–806, 2010.

Скачать книгу