Introduction To Modern Planar Transmission Lines. Anand K. Verma

Чтение книги онлайн.

Читать онлайн книгу Introduction To Modern Planar Transmission Lines - Anand K. Verma страница 114

Introduction To Modern Planar Transmission Lines - Anand K. Verma

Скачать книгу

Transmission line Theory and Microwave Applications (The Engineering Approach), Wiley‐ Interscience, John Wiley & Sons, Inc., Hoboken, NJ, 2006.

      8 B.8 Eleftheriades, G.I.; Balmain, K.G. (Editors): Negative‐Refraction Metamaterials: Fundamental Principles and Applications, Wiley‐ Interscience, John Wiley & Sons, Inc., Priceton, NJ, 2005.

      9 B.9 Capolino, F. (Editor): Theory and Phenomena of Metamaterials, CRC Press, Boca Raton, 2009.

      10 B.10 Marques, R.; Martin, F.; Sorolla, M.: Metamaterials with Negative Parameters. Theory, Design and Microwave Applications, Wiley, Hoboken, NJ, 2008.

      11 B.11 Sarychev, A.K.; Shalaev, V.M.: Electrodynamics of Metamaterials, World Scientific Publishing, Singapore, 2007.

      12 B.12 Smith, G.S.: An Introduction to Classical Electromagnetic Radiation, Cambridge University Press, New York, NY, 1997.

      13 B.13 Rutledge, D.B., Neikirk, D. P.; Kasilingam, D.P.: Planar Integrated Circuit Antennas, In Infrared and Millimeter Waves: Volume 10, Millimeter Components and Techniques Part II, Chapter‐1, K.J. Button, Academic Press, New York, NY, 1983.

      14 B.14 Liao, S.Y.: Microwave Devices and Circuits, 2nd Edition, Prentice – Hall of India Pvt. Ltd, New Delhi, 1989.

      15 B.15 Kraus, J.D.: Antenna, 2nd Edition, McGraw‐Hill International. Editions, New York, NY, 1988.

      16 B.16 Bass, A.F. de (Ed. In‐Chief): Nonostructured Metamaterials, European Commission, Brussels, 2018.

      Journals

      1 J.1 Holmes, J.J.; Balanis, C.A.: Refraction of the uniform plane wave incident on a plane boundary between two lossy media, IEEE Trans. Antenna Propagat., Vol. 26, No. 5, pp. 738–741, Sept. 1978.

      2 J.2 Pendry, J.B.: Negative refraction makes a perfect lens, Phys. Rev. Lett., Vol. 85, No. 18, pp. 3966–3969, Oct. 2000.

      3 J.3 Veselago, V.: The electrodynamics of substances with simultaneously negative values of ε and μ, Soviet Physics Uspekhi, Vol. 10, No. 4, pp. 509–514, Jan., Feb. 1968.

      4 J.4 Bose, J.C.: On the rotation of the plane of polarization of electric waves by a twisted structure, Proc. Poy. Soc., Vol. 63, pp. 46–52, 1898.

      5 J.5 Sihvola, A.: Metamaterials in electromagnetics, Metamaterials, Vol. 1, pp. 2–11, 2007.

      6 J.6 Shamonina, E.; Solymar, L.: Metamaterials: How the subject started, Metamaterials, Vol. 1, pp. 12–18, 2007.

      7 J.7 Lindell, I.V.; Tretyakov, S.A.; Nikoskinen, K.I.; Ilvonen, S.: BW media –media with negative parameters, capable of supporting backward waves, Microw. Opt. Technol. Lett., Vol. 31, No. 2, pp. 129–133, Oct. 2001.

      8 J.8 Ziolkowski, R.W.; Heyman, E.: Wave propagation in media having negative permittivity and permeability, Phys. Rev. E, Vol. 64, pp. 1–15, 056625:, 2001.

      9 J.9 Engheta, N.; Ziolkowski, R.W.: Positive future for double‐negative metamaterials, IEEE Trans. Microwave Theory Tech. MTT, Vol. 53, No. 4, pp. 1535–1556, April 2005.

      10 J.10 Alu, A.; Engheta, N.: Pairing an epsilon –negative slab with a mu‐negative slab: Anomalous tunneling and transparency, IEEE Trans. Antenna Proag., Special Issue on Metamaterials, Vol. 51, No.10, pp. 2558–2570, Oct. 2003.

      11 J.11 Fujishige, T.; Caloz, C.; Itoh, T.: Experimental demonstration of transparency in the ENG‐MNG pair in a CRLH transmission‐line implementation, Microw. Opt. Technol. Lett., Vol. 46, No. 5, pp. 476–48, Sept. 2005.

      12 J.12 Engheta, N.: An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability, IEEE Antenna Wireless Propag. Lett., Vol. 1, pp. 10–13, 2002.

      13 J.13 Pendry, J.B.; Smith, D.R.: Reversing light: Negative refraction, Phys. Today, Vol. 57, No. 6, pp. 37–43, June 2003.

      14 J.14 Zhang, X.; Liu, Z.: Superlenses to overcome the diffraction limit, Nat. Mater., Vol. 7, pp. 435–441, June 2008.

      15 J.15 Fang, N.; Liu, Z.; Yen, T.J.; Zhang, X.: Regenerating evanescent waves from a silver superlens, Opt. Express, Vol. 11, pp. 682–687, 2003.

      16 J.16 Grbic, A.; Eleftheriades, G.V.: Overcoming the diffraction limit with a planar left‐handed transmission‐line lens, Phys. Rev. Lett., Vol. 92, 117403, 2004.

      17 J.17 Jacob, Z.; Alekseyev, L.V.; Narimanov, E.: Optical hyperlens: Far‐field imaging beyond the diffraction limit, Opt. Express, Vol. 14, pp. 8247–8256, 2006.

      18 J.18 Lee, H.; Liu, Z.; Xiong, Y.; Sun, C.; Zhang, X.: Development of optical hyperlens for imaging below the diffraction limit, Opt. Express, Vol. 15, pp. 15886–15891, 2007.

      19 J.19 Lee, H.; Xiong, Y.; Fang, N.; Srituravanich, N.; Durant, S.; Ambati, M.; Sun, C.; Zhang, X.: Realization of optical superlens imaging below the diffraction limit, New J. Phys., Vol. 7, No. 255, pp. 1–16, 2005.

      20 J.20 Kim, M.; Rho, J.: Metamaterials and imaging, Nano Convergence, Vol. 2, No. 22, pp. 1–16, 2015.

      21 J.21 Jacob, Z.; Alekseyev, L.V.; Narimanov, E.: Optical hyperlens: Far‐field imaging beyond the diffraction limit, Opt. Express, Vol. 14, No.18, pp. 8247–8256, 2006.

      22 J.22 Pendry, J.: New electromagnetic materials emphasize the negative, Phys. World, pp. 1–5, 2001, Archived 2011‐07‐17 at the Wayback Machine.

      23 J.23 Leong, K.M.K.H.; Lai, A.; Itoh, T.: Demonstration of reverse Doppler effect using a left‐handed transmission line, Microw. Opt. Technol. Lett., Vol. 48, No. 3, pp. 545–547, March 2006.

      24 J.24 Seddon, N.; Bearpark, T.: Observation of the inverse Doppler effect, Science, Vol. 302, pp. 1537–1539, Nov. 2003.

      25 J.25 Chen, J.; Wang, Y.; Jia, B.; Geng, T.; Li, X.; Feng, L.; Qian, W.; Liang, B.; Xuanxiong Zhang, X.; Min Gu, M.; Songlin Zhuang, S.: Observation of the inverse Doppler effect in negative‐index materials at optical frequencies, Nat. Photonics, Vol. 5, pp. 239–242, April. 2011.

      26 J.26 Wu, B.I; Lu, J.; Kong, J.A.; Chen, M.: Left‐handed metamaterial design for Čerenkov radiation, J. Appl. Phys., Vol. 102, No.114907, pp. 1–5, 2007.

      27 J.27 Duan, Z.Y.; Wu, B.‐I.; Xi, S.; Chen, H.S.; Chen, M.: Research progress in reversed Cherenkov radiation in double‐negative metamaterials, Prog. Electromagn. Res., PIER, Vol. 90, pp. 75–87, 2009.

      28 J.28 Xi, S.; Chen, H.; Jiang, T.; Lixin Ran, L.; Huangfu, J.; Wu, B.‐I.; Kong, J.A.; Chen, M.: Experimental verification of reversed Cherenkov radiation in left‐handed metamaterial, Phys. Rev. Lett., PRLVol. 103, No. 194801, pp. 1–4, Nov. 2009.

      29 J.29 Wanghuang, T.; Chen, W.; Huang, Y.; Wen, G.: Analysis of metamaterial absorber in normal and oblique incidence by using interference theory, AIP Adv., Vol. 3, No. 102118, pp. 1–9, 2013.

      30 J.30 Engheta, N.: Thin absorbing screens using metamaterial surfaces, IEEE Antennas Propagation Int. Symp., vol. 2, pp. 392–395, June 2002.

      31 J.31 Han, Y.; Che, W.Q.; Christopoulos, C.; Chang, Y.M.: Investigation of thin and broadband capacitive surface‐based absorber by the impedance analysis method, IEEE Trans. Electromagn. Compat., Vol. 57, pp. 22–26, 2015.

      32 J.32 Watts, C.M.; Liu, X.; Padilla, W.J.: Metamaterial electromagnetic

Скачать книгу