Introduction To Modern Planar Transmission Lines. Anand K. Verma

Чтение книги онлайн.

Читать онлайн книгу Introduction To Modern Planar Transmission Lines - Anand K. Verma страница 67

Introduction To Modern Planar Transmission Lines - Anand K. Verma

Скачать книгу

line shown in Fig (3.27a). Thus, Fig (3.27b and c) also show the behavior of the present series capacitor loaded LC‐line. This line supports the forward wave and it is a normal dispersive transmission line. It supports the fast‐wave above the cut‐off frequency. This line is the dual structure of the line shown in Fig (3.29) that supports the backward wave propagation.

      Additional numbers of configurations for the loaded transmission lines could be obtained. For instance, the L‐C section of a line, supporting the forward wave, could be cascaded with the C‐L section of a line, supporting the backward wave. The composite line forms an interesting kind of the transmission line structure [B.19, J.8]. Both the series and parallel reactive loading of the lines can be done. Such loaded line structures have been realized in the planar technology to obtain novel properties useful for the development of novel microwave devices. They form the so‐called metamaterials. The concept of metamaterials has been introduced in chapter 5 and elaborated in chapter 21. Chapter 22 considers the planar 1D‐metalines and 2D‐planar metasurfaces, and chapter 19 discusses the planar periodic transmission lines.

      Books

      1 B.1 Pozar, D.M.: Microwave Engineering, 2nd Edition, John Wiley & Sons, Singapore, 1999.

      2 B.2 Fache, N.; Olyslager, F.; De Zutter, D.: Electromagnetic and Circuit Modeling of Multiconductor Transmission Lines, Clarendon Press, Oxford, NY, 1993.

      3 B.3 Rizzi, P.A.: Microwave Engineering‐Passive Circuits, Prentice‐Hall International Edition, Englewood Cliff, NJ, 1988.

      4 B.4 Ramo Simon, W.J.R.: Van Duzer Theodore, Fields, and Waves in Communication Electronics, 3rd Edition, John Wiley & Sons, Singapore, 1994.

      5 B.5 Collin, R.E.: Foundations for Microwave Engineering, 2nd Edition, McGraw‐Hill, Inc., New York, 1992

      6 B.6 Carson, R.S.: High‐Frequency Amplifiers, 2nd Edition, John Wiley & Sons, New York, 1982.

      7 B.7 Elliott, R.S.: An Introduction to Guided‐Waves and Microwave Circuits, Prentice‐Hall, Englewood Cliff, NJ, 1993.

      8 B.8 Gardial, F.E.: Lossy Transmission Lines, Artech House, Boston, MA, 1987.

      9 B.9 Freeman, J.C.: Fundamentals of Microwave Transmission Lines, John Wiley, New York., 1996.

      10 B.10 Swanson, D.G.; Hoefer, W.J.R.: Microwave Circuit Modeling Using Electromagnetic Field Simulation, Artech House, Boston, MA, 2003.

      11 B.11 Weber, R.J.: Introduction to Microwave Circuits, Radio Frequency and Design Applications, IEEE Press, New York, 2001.

      12 B.12 Collin, R.E: Field Theory of Guided Waves, IEEE Press, New York, 1991.

      13 B.13 Orfanidis, S.J.: Electromagnetic Waves and Antenna, Free Book on Web.

      14 B.14 Staelin, D.H.; Morgenthaler, A.W.; Kong, J.A.: Electromagnetic Waves, Prentice‐Hall, Englewood Cliff, NJ, 1994.

      15 B.15 Sadiku, M.N.O.: Elements of Electromagnetics, 3rd Edition, Oxford University Press, New York, 2001.

      16 B.16 Cheng, D.K.: Fields and Wave Electromagnetics, 2nd Edition, Pearson Education, Singapore, 1089.

      17 B.17 Balanis, C.A.: Advanced Engineering Electromagnetics, John Wiley & Sons, New York, 1989.

      18 B.18 Mattick, R.E.: Transmission Lines for Digital and Communication Networks. IEEE Press, New York, 1995.

      19 B.19 Engheta, N.; Ziolkowski, R.W.: Metamaterials: Physics and Engineering Explorations, John Wiley & Sons, Inc., New York, 2006.

      20 B.20 Remoissenet, M.: Waves Called Solitons: Concepts and Experiments, Springer, New York, 1996.

      Journals

      1 J.1 Kurokawa, K.: Power waves and the scattering matrix, IEEE Trans. Microwave Theory Tech. Vol. 13. No. 2, pp. 607–610, 1965.

      2 J.2 Lei, Z.; Wu, K.: Short‐open calibration technique for field theory‐based parameter extraction of lumped elements of planar integrated circuits, IEEE Trans. Microwave Theory Tech., Vol. 50, No. 8, pp. 1861–1869, Aug. 2002.

      3 J.3 Hasegawa, H.; Furukawa, M.; Yanai, H.: Properties of microstrip line on Si‐SiO2 system, IEEE Trans. Microwave Theory Tech., Vol. MTT‐19, pp. 869–881, 1971.

      4 J.4 Jager, D.; Rabus, W.: Bias‐dependent phase delay of Schottky contact microstrip line, Electron. Lett., Vol. 9, pp. 201–202, 1973.

      5 J.5 Veghte, R.L.; Balanis, C.A.: Dispersion of transient signal in microstrip transmission lines, IEEE Trans. Microwave Theory Tech. Vol. 34, pp. 1427–1436, Dec. 1986.

      6 J.6 Verma, A.K.; Kumar, R.: Distortion in gaussian pulse on microstrip‐like transmission lines, Microw. Opt. Technol. Lett., Vol. 17, No. 4, pp. 253–255, March 1998.

      7 J.7 Hua, C.; Dogariu, A.; Wang, L.J.: Negative group delay and pulse compression in superluminal pulse propagation, IEEE J. Sel. Top. Quantum Electron., Vol. 9, No. 1, pp. 52–58, Jan–Feb 2003.

      8 J.8 Lai, A.; Caloz, C.; Itoh, T.: Transmission line based metamaterials and their microwave applications, Microwave Mag., Vol. 5, No. 3, pp. 34–50, Sept. 2004.

      Introduction

      The characteristics of EM‐wave propagating on a planar line are strongly dependent on the nature of the materials used in planar technology. The familiarity with the characteristics of the medium and EM‐wave propagation in the unbounded medium is important to understand the working of the planar transmission lines. These topics are extensively covered in several books [B.1–B.15].

      Broadly speaking, the present chapter covers basic electrical characteristics of the material media and the EM‐waves propagation in the unbounded dielectric media – both isotropic and anisotropic. In the first part of the present chapter, and also in chapter 6, attention is paid to the physical processes and the circuit models to understand the electrical properties of the material medium. The electrical and magnetic properties of the materials appear as the responses to the electric and magnetic excitations. Such excitations could be in the form of the circuit sources, such as the voltage and a current source. It could also be in the form of the field sources, such as the electric field intensity (E) and magnetic field intensity (H). The excitation could be any of three forms, namely (i) time‐independent, i.e. the static or DC type; (ii) frequency‐dependent, i.e. the time‐harmonic dependent, or AC (phasor) type; and (iii) arbitrary time‐dependent, i.e. the transient type. The discussion is limited to the static and time‐harmonic type of responses

Скачать книгу