Mantle Convection and Surface Expressions. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Mantle Convection and Surface Expressions - Группа авторов страница 69
68 Cococcioni, M., & de Gironcoli, S. (2005). Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B, 71, 035105. https://doi.org/10.1103/PhysRevB.71.035105
69 Connolly, J.A.D. (2005). Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett., 236, 524–541. https://doi.org/10.1016/j.epsl.2005.04.033
70 Cox, P.A. (1987). The Electronic Structure and Chemistry of Solids. Oxford University Press, Oxford.
71 Crowhurst, J.C., Brown, J.M., Goncharov, A.F., & Jacobsen, S.D. (2008). Elasticity of (Mg,Fe)O through the spin transition of iron in the lower mantle. Science, 319, 451–453. https://doi.org/10.1126/science.1149606
72 Cummins, H.Z., & Schoen, P.E. (1972). Linear scattering from thermal fluctuations. In Arecchi, F.T., Schulz‐DuBois, E.O. (Eds.), Laser Handbook. North‐Holland Publishing Company, Amsterdam, pp. 1029–1075.
73 Dai, L., Kudo, Y., Hirose, K., Murakami, M., Asahara, Y., Ozawa, H., et al. (2013). Sound velocities of Na0.4Mg0.6Al1.6Si0.4O4 NAL and CF phases to 73 GPa determined by Brillouin scattering method. Phys. Chem. Miner., 40, 195–201. https://doi.org/10.1007/s00269‐012‐0558‐0
74 Davies, D.R., Goes, S., Davies, J.H., Schuberth, B.S.A., Bunge, H.‐P., & Ritsema, J. (2012). Reconciling dynamic and seismic models of Earth’s lower mantle: The dominant role of thermal heterogeneity. Earth Planet. Sci. Lett., 353–354, 253–269. https://doi.org/10.1016/j.epsl.2012.08.016
75 Davies, G.F. (1974). Effective elastic moduli under hydrostatic stress—I. Quasi‐harmonic theory. J. Phys. Chem. Solids, 35, 1513–1520. https://doi.org/10.1016/S0022‐3697(74)80279‐9
76 Davies, G.F., & Dziewonski, A.M. (1975). Homogeneity and constitution of the earth’s lower mantle and outer core. Phys. Earth Planet. Inter., 10, 336–343. https://doi.org/10.1016/0031‐9201(75)90060‐6
77 Decremps, F., Antonangeli, D., Gauthier, M., Ayrinhac, S., Morand, M., Marchand, et al. (2014). Sound velocity of iron up to 152 GPa by picosecond acoustics in diamond anvil cell. Geophys. Res. Lett., 41, 1459–1464. https://doi.org/10.1002/2013GL058859
78 Decremps, F., Belliard, L., Gauthier, M., & Perrin, B. (2010). Equation of state, stability, anisotropy and nonlinear elasticity of diamond‐cubic (ZB) silicon by phonon imaging at high pressure. Phys. Rev. B, 82, 104119. https://doi.org/10.1103/PhysRevB.82.104119
79 Decremps, F., Belliard, L., Perrin, B., & Gauthier, M. (2008). Sound velocity and absorption measurements under high pressure using picosecond ultrasonics in a diamond anvil cell: Application to the stability study of AlPdMn. Phys. Rev. Lett., 100, 035502. https://doi.org/10.1103/PhysRevLett.100.035502
80 Deschamps, F., Cobden, L., & Tackley, P.J. (2012). The primitive nature of large low shear‐wave velocity provinces. Earth Planet. Sci. Lett., 349–350, 198–208. https://doi.org/10.1016/j.epsl.2012.07.012
81 Deschamps, F., & Trampert, J. (2004). Towards a lower mantle reference temperature and composition. Earth Planet. Sci. Lett., 222, 161–175. https://doi.org/10.1016/j.epsl.2004.02.024
82 Dil, J.G. (1982). Brillouin scattering in condensed matter. Rep. Prog. Phys., 45, 285–334. https://doi.org/10.1088/0034‐4885/45/3/002
83 Drickamer, H.G., & Frank, C.W. (1973). Electronic Transitions and the High Pressure Chemistry and Physics of Solids. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6896-0.
84 Duffy, T.S., & Anderson, D.L. (1989). Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J. Geophys. Res. – Solid Earth, 94, 1895–1912. https://doi.org/10.1029/JB094iB02p01895
85 Durand, S., Debayle, E., Ricard, Y., Zaroli, C., & Lambotte, S. (2017). Confirmation of a change in the global shear velocity pattern at around 1000 km depth. Geophys. J. Int., 211, 1628–1639. https://doi.org/10.1093/gji/ggx405
86 Dziewonski, A.M., & Anderson, D.L. (1981). Preliminary reference Earth model. Phys. Earth Planet. Inter., 25, 297–356. https://doi.org/10.1016/0031‐9201(81)90046‐7
87 Fayer, M.D. (1982). Dynamics of molecules in condensed phases: picosecond holographic grating experiments. Annu. Rev. Phys. Chem., 33, 63–87. https://doi.org/10.1146/annurev.pc.33.100182.000431
88 Fei, Y., Zhang, L., Corgne, A., Watson, H., Ricolleau, A., Meng, Y., & Prakapenka, V. (2007). Spin transition and equations of state of (Mg, Fe)O solid solutions. Geophys. Res. Lett., 34, L17307. https://doi.org/10.1029/2007GL030712
89 Finkelstein, G.J., Jackson, J.M., Said, A., Alatas, A., Leu, B.M., Sturhahn, W., & Toellner, T.S. (2018). Strongly anisotropic magnesiowüstite in Earth’s lower mantle. J. Geophys. Res. – Solid Earth, 123, 4740–4750. https://doi.org/10.1029/2017JB015349
90 Fiquet, G., Auzende, A.L., Siebert, J., Corgne, A., Bureau, H., Ozawa, H., & Garbarino, G. (2010). Melting of peridotite to 140 gigapascals. Science, 329, 1516–1518. https://doi.org/10.1126/science.1192448
91 Fiquet, G., Badro, J., Guyot, F., Bellin, C., Krisch, M., Antonangeli, D., et al. (2004). Application of inelastic X‐ray scattering to the measurements of acoustic wave velocities in geophysical materials at very high pressure. Phys. Earth Planet. Inter., 143–144, 5–18. https://doi.org/10.1016/j.pepi.2003.10.005
92 Fiquet, G., Badro, J., Guyot, F., Requardt, H., & Krisch, M. (2001). Sound velocities in iron to 110 gigapascals. Science, 291, 468–471. https://doi.org/10.1126/science.291.5503.468
93 Fiquet, G., Dewaele, A., Andrault, D., Kunz, M., Bihan, T.L. (2000). Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions. Geophys. Res. Lett., 27, 21–24.