Mantle Convection and Surface Expressions. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Mantle Convection and Surface Expressions - Группа авторов страница 78
305 Wentzcovitch, R.M., Justo, J.F., Wu, Z., Silva, C.R.S. da, Yuen, D.A., & Kohlstedt, D. (2009). Anomalous compressibility of ferropericlase throughout the iron spin cross‐over. Proc. Natl. Acad. Sci. U.S.A., 106, 8447–8452. https://doi.org/10.1073/pnas.0812150106
306 Wentzcovitch, R.M., Karki, B.B., Cococcioni, M., & de Gironcoli, S. (2004). Thermoelastic properties of MgSiO3‐perovskite: Insights on the nature of the Earth’s lower mantle. Phys. Rev. Lett., 92, 018501. https://doi.org/10.1103/PhysRevLett.92.018501
307 Wentzcovitch, R.M., Martins, J.L., & Price, G.D. (1993). Ab initio molecular dynamics with variable cell shape: Application to MgSiO3. Phys. Rev. Lett., 70, 3947–3950. https://doi.org/10.1103/PhysRevLett.70.3947
308 Wentzcovitch, R.M., Ross, N.L., & Price, G.D. (1995). Ab initio study of MgSiO3 and CaSiO3 perovskites at lower‐mantle pressures. Phys. Earth Planet. Inter., 90, 101–112. https://doi.org/10.1016/0031‐9201(94)03001‐Y
309 Wentzcovitch, R.M., Tsuchiya, T., & Tsuchiya, J. (2006). MgSiO3 postperovskite at D” conditions. Proc. Natl. Acad. Sci. U.S.A., 103, 543–546. https://doi.org/10.1073/pnas.0506879103
310 Wentzcovitch, R.M., Wu, Z., & Carrier, P. (2010a). First principles quasiharmonic thermoelasticity of mantle minerals. Rev. Mineral. Geochem., 71, 99–128. https://doi.org/10.2138/rmg.2010.71.5
311 Wentzcovitch, R.M., Yu, Y.G., & Wu, Z. (2010b). Thermodynamic properties and phase relations in mantle minerals investigated by first principles quasiharmonic theory. Rev. Mineral. Geochem., 71, 59–98. https://doi.org/10.2138/rmg.2010.71.4
312 Wicks, J.K., Jackson, J.M., & Sturhahn, W. (2010). Very low sound velocities in iron‐rich (Mg,Fe)O: Implications for the core–mantle boundary region. Geophys. Res. Lett., 37, L15304. https://doi.org/10.1029/2010GL043689
313 Wicks, J.K., Jackson, J.M., Sturhahn, W., & Zhang, D. (2017). Sound velocity and density of magnesiowüstites: Implications for ultralow‐velocity zone topography. Geophys. Res. Lett., 44, 2148–2158. https://doi.org/10.1002/2016GL071225
314 Workman, R.K., & Hart, S.R. (2005). Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett., 231, 53–72. https://doi.org/10.1016/j.epsl.2004.12.005
315 Wu, Y., Qin, F., Wu, X., Huang, H., McCammon, C.A., Yoshino, T., et al. (2017). Spin transition of ferric iron in the calcium‐ferrite type aluminous phase. J. Geophys. Res. – Solid Earth, 122, 5935–5944. https://doi.org/10.1002/2017JB014095
316 Wu, Y., Wu, X., Lin, J.‐F., McCammon, C.A., Xiao, Y., Chow, P., et al. (2016). Spin transition of ferric iron in the NAL phase: Implications for the seismic heterogeneities of subducted slabs in the lower mantle. Earth Planet. Sci. Lett., 434, 91–100. https://doi.org/10.1016/j.epsl.2015.11.011
317 Wu, Z., Justo, J.F., da Silva, C.R.S., de Gironcoli, S., & Wentzcovitch, R.M. (2009). Anomalous thermodynamic properties in ferropericlase throughout its spin crossover. Phys. Rev. B, 80, 014409. https://doi.org/10.1103/PhysRevB.80.014409
318 Wu, Z., Justo, J.F., & Wentzcovitch, R.M. (2013). Elastic anomalies in a spin‐crossover system: Ferropericlase at lower mantle conditions. Phys. Rev. Lett., 110, 228501. https://doi.org/10.1103/PhysRevLett.110.228501
319 Wu, Z., & Wentzcovitch, R.M. (2014). Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle. Proc. Natl. Acad. Sci. U.S.A., 111, 10468–10472. https://doi.org/10.1073/pnas.1322427111
320 Wu, Z., & Wentzcovitch, R.M. (2011). Quasiharmonic thermal elasticity of crystals: an analytical approach. Phys. Rev. B, 83, 184115. https://doi.org/10.1103/PhysRevB.83.184115
321 Wu, Z., & Wentzcovitch, R.M. (2009). Effective semiempirical ansatz for computing anharmonic free energies. Phys. Rev. B, 79, 104304. https://doi.org/10.1103/PhysRevB.79.104304
322 Xu, S., Lin, J.‐F., & Morgan, D. (2017). Iron partitioning between ferropericlase and bridgmanite in the Earth’s lower mantle. J. Geophys. Res. – Solid Earth, 122, 1074–1087. https://doi.org/10.1002/2016JB013543
323 Xu, W., Lithgow‐Bertelloni, C., Stixrude, L., & Ritsema, J. (2008). The effect of bulk composition and temperature on mantle seismic structure. Earth Planet. Sci. Lett., 275, 70–79. https://doi.org/10.1016/j.epsl.2008.08.012
324 Yamazaki, D., Ito, E., Yoshino, T., Tsujino, N., Yoneda, A., Gomi, H., et al. (2019). High‐pressure generation in the Kawai‐type multianvil apparatus equipped with tungsten‐carbide anvils and sintered‐diamond anvils, and X‐ray observation on CaSnO3 and (Mg,Fe)SiO3. Comptes Rendus Geosci., 351, 253–259. https://doi.org/10.1016/j.crte.2018.07.004
325 Yang, J., Lin, J.‐F., Jacobsen, S.D., Seymour, N.M., Tkachev, S.N., & Prakapenka, V.B. (2016). Elasticity of ferropericlase and seismic heterogeneity in the Earth’s lower mantle. J. Geophys. Res. – Solid Earth, 121, 8488–8500. https://doi.org/10.1002/2016JB013352
326 Yang, J., Tong, X., Lin, J.‐F., Okuchi, T., & Tomioka, N. (2015). Elasticity of ferropericlase across the spin crossover in the Earth’s lower mantle. Sci. Rep., 5, 17188. https://doi.org/10.1038/srep17188
327 Yang, R., & Wu, Z. (2014). Elastic properties of stishovite and the CaCl2‐type silica at the mantle temperature and pressure: an ab initio investigation. Earth Planet. Sci. Lett., 404, 14–21. https://doi.org/10.1016/j.epsl.2014.07.020
328 Yu, S., & Garnero, E.J. (2018). Ultralow velocity zone locations: a global assessment. Geochem. Geophys. Geosystems, 19, 396–414. https://doi.org/10.1002/2017GC007281
329 Zha, C., Duffy, T.S., Downs, R.T., Mao, H., & Hemley, R.J. (1998). Brillouin scattering and X‐ray diffraction of San Carlos olivine: direct pressure determination to 32 GPa. Earth Planet. Sci. Lett., 159, 25–33. https://doi.org/10.1016/S0012‐821X(98)00063‐6