Biodiesel Technology and Applications. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Biodiesel Technology and Applications - Группа авторов страница 29

Biodiesel Technology and Applications - Группа авторов

Скачать книгу

      98. Y. Xu, W. Du, D. Liu, J. Zeng, A novel enzymatic route for biodiesel production from renewable oils in a solvent-free medium, Biotechnol. Lett. 25, 1239–1241, 2003. https://doi.org/10.1023/A:1025065209983.

      99. L. Zhang, S. Sun, Z. Xin, B. Sheng, Q. Liu, Synthesis and component confirmation of biodiesel from palm oil and dimethyl carbonate catalyzed by immobilized-lipase in solvent-free system, Fuel. 89, 3960–3965, 2010. https://doi.org/10.1016/j.fuel.2010.06.030.

      100. Z. Wang, J. Zhuge, H. Fang, B.A. Prior, Glycerol production by microbial fermentation: A review, Biotechnol. Adv. 19, 201–223, 2001. https://doi.org/10.1016/S0734-9750(01)00060-X.

      101. Y. Zheng, J. Quan, X. Ning, L.M. Zhu, B. Jiang, Z.Y. He, Lipase-catalyzed transesterification of soybean oil for biodiesel production in tert-amyl alcohol, World J. Microbiol. Biotechnol. 25, 41–46, 2009. https://doi.org/10.1007/s11274-008-9858-4.

      102. P.S. Bisen, B.S. Sanodiya, G.S. Thakur, R.K. Baghel, G.B.K.S. Prasad, Biodiesel production with special emphasis on lipase-catalyzed transesterification, Biotechnol. Lett. 2010. https://doi.org/10.1007/s10529-010-0275-z.

      103. H. Ghamgui, M. Karra-Chaâbouni, Y. Gargouri, 1-Butyl oleate synthesis by immobilized lipase from Rhizopus oryzae: a comparative study between n-hexane and solvent-free system, Enzyme Microb. Technol. 35, 355–363, 2004. https://doi.org/10.1016/J.ENZMICTEC.2004.06.002.

      104. M. Xiao, C. Qi, J.P. Obbard, Biodiesel production using Aspergillus niger as a whole-cell biocatalyst in a packed-bed reactor, GCB Bioenergy. 3, 293–298, 2011. https://doi.org/10.1111/j.1757-1707.2010.01087.x.

      105. Ö. Aybastıer, C. Demir, Immobilization of Candida antarctica lipase A on chitosan beads for the production of fatty acid methyl ester from waste frying oil, energy sources, Part A Recover. Util. Environ. Eff. 36, 2313–2319, 2014. https://doi.org/10.1080/15567036.2011.567233.

      106. S. Kojima, D. Du, M. Sato, E.Y. Park, Efficient production of fatty acid methyl ester from waste activated bleaching earth using diesel oil as organic solvent, J. Biosci. Bioeng. 98, 420–424, 2004. https://doi.org/http://dx.doi.org/10.1016/S1389-1723(05)00306-3.

      107. A. Bajaj, P. Lohan, P.N. Jha, R. Mehrotra, Biodiesel production through lipase catalyzed transesterification: An overview, J. Mol. Catal. B Enzym. 62, 9–14, 2010. https://doi.org/10.1016/j.molcatb.2009.09.018.

      108. S. Ycel, P. Terziolu, D. zime, Lipase Applications in Biodiesel Production, in: Biodiesel - Feed. Prod. Appl., InTech, 2012. https://doi.org/10.5772/52662.

      110. P. Priji, K.N. Unni, S. Sajith, P. Binod, S. Benjamin, Production, optimization, and partial purification of lipase from Pseudomonas sp. strain BUP6, a novel rumen bacterium characterized from Malabari goat, Biotechnol. Appl. Biochem., 2015. https://doi.org/10.1002/bab.1237.

      111. A. Kumar, S.S. Parihar, N. Batra, Enrichment, isolation and optimization of lipase-producing Staphylococcus sp. from oil mill waste (Oil cake), J. Exp. Sci., 2012.

      112. S. Javed, F. Azeem, S. Hussain, I. Rasul, M.H. Siddique, M. Riaz, M. Afzal, A. Kouser, H. Nadeem, Bacterial lipases: A review on purification and characterization, Prog. Biophys. Mol. Biol. 132, 23–34, 2018. https://doi.org/10.1016/j.pbiomolbio.2017.07.014.

      113. B.D. Ribeiro, A.M. de Castro, M.A.Z. Coelho, D.M.G. Freire, Production and use of lipases in bioenergy: A review from the feedstocks to biodiesel production, Enzyme Res. 2011, 1–16, 2011. https://doi.org/10.4061/2011/615803.

      114. M. Kapoor, M.N. Gupta, Lipase promiscuity and its biochemical applications, Process Biochem., 2012. https://doi.org/10.1016/j.procbio.2012.01.011.

      115. A.L. Paiva, V.M. Balcão, F.X. Malcata, Kinetics and mechanisms of reactions catalyzed by immobilized lipases, Enzyme Microb. Technol., 2000. https://doi.org/10.1016/S0141-0229(00)00206-4.

      116. A. Türkan, Ş. Kalay, Monitoring lipase-catalyzed methanolysis of sunflower oil by reversed-phase high-performance liquid chromatography: Elucidation of the mechanisms of lipases, J. Chromatogr. A. 1127, 34–44, 2006. https://doi.org/10.1016/j.chroma.2006.05.065.

      117. D. Bezbradica, M. Stojanović, D. Veličković, A. Dimitrijević, M. Carević, M. Mihailović, N. Milosavić, Kinetic model of lipase-catalyzed conversion of ascorbic acid and oleic acid to liposoluble vitamin C ester, Biochem. Eng. J., 2013. https://doi.org/10.1016/j.bej.2012.12.001.

      118. A.E.M. Janssen, B.J. Sjursnes, A. V. Vakurov, P.J. Halling, Kinetics of lipasecatalyzed esterification in organic media: Correct model and solvent effects on parameters, Enzyme Microb. Technol., 1999. https://doi.org/10.1016/S0141-0229(98)00134-3.

      119. K.-E. Jaeger, B.W. Dijkstra, M.T. Reetz, Bacterial biocatalysts: Molecular biology, three-dimensional structures, and biotechnological applications of lipases, Annu. Rev. Microbiol. 53, 315–351, 1999. https://doi.org/10.1146/annurev.micro.53.1.315.

      120. F. Hasan, A.A. Shah, A. Hameed, Industrial applications of microbial lipases, Enzyme Microb. Technol. 39, 235–251, 2006. https://doi.org/10.1016/j.enzmictec.2005.10.016.

      121. H. Treichel, D. de Oliveira, M.A. Mazutti, M. Di Luccio, J.V. Oliveira, A Review on Microbial Lipases Production, Food Bioprocess Technol. 3, 182–196, 2010. https://doi.org/10.1007/s11947-009-0202-2.

      123.

Скачать книгу