Transporters and Drug-Metabolizing Enzymes in Drug Toxicity. Albert P. Li

Чтение книги онлайн.

Читать онлайн книгу Transporters and Drug-Metabolizing Enzymes in Drug Toxicity - Albert P. Li страница 32

Transporters and Drug-Metabolizing Enzymes in Drug Toxicity - Albert P. Li

Скачать книгу

surveillance' for recently introduced drugs. Ned Tijdschr Geneeskd 2000; 144 (41):1964–7.

      116 116 Choi S. Nefazodone (Serzone) withdrawn because of hepatotoxicity. CMAJ 2003; 169 (11):1187.

      117 117 Edwards IR. Withdrawing drugs: nefazodone, the start of the latest saga. Lancet 2003; 361 (9365):1240.

      118 118 Stewart DE. Hepatic adverse reactions associated with nefazodone. Can J Psychiatry 2002; 47(4):375–7.

      119 119 Kalgutkar AS, Vaz AD, Lame ME, Henne KR, Soglia J, Zhao SX, et al. Bioactivation of the nontricyclic antidepressant nefazodone to a reactive quinone‐imine species in human liver microsomes and recombinant cytochrome P450 3A4. Drug Metab Dispos 2005; 33(2):243–53.

      120 120 Dykens JA, Jamieson JD, Marroquin LD, Nadanaciva S, Xu JJ, Dunn MC, et al. in vitro assessment of mitochondrial dysfunction and cytotoxicity of nefazodone, trazodone, and buspirone. Toxicol Sci 2008; 103(2):335–45.

      121 121 Zhang J, Doshi U, Suzuki A, Chang CW, Borlak J, Li AP, et al. Evaluation of multiple mechanism‐based toxicity endpoints in primary cultured human hepatocytes for the identification of drugs with clinical hepatotoxicity: results from 152 marketed drugs with known liver injury profiles. Chem Biol Interact 2016; 255:3–11.

      122 122 Kostrubsky SE, Strom SC, Kalgutkar AS, Kulkarni S, Atherton J, Mireles R, et al. Inhibition of hepatobiliary transport as a predictive method for clinical hepatotoxicity of nefazodone. Toxicol Sci 2006; 90(2):451–9.

      123 123 Oorts M, Baze A, Bachellier P, Heyd B, Zacharias T, Annaert P, et al. Drug‐induced cholestasis risk assessment in sandwich‐cultured human hepatocytes. Toxicol in vitro 2016; 34:179–86.

      124 124 Saab L, Peluso J, Muller CD, Ubeaud‐Sequier G. Implication of hepatic transporters (MDR1 and MRP2) in inflammation‐associated idiosyncratic drug‐induced hepatotoxicity investigated by microvolume cytometry. Cytometry A 2013; 83(4):403–8.

      125 125 Markham A, Keam SJ. Obeticholic acid: first global approval. Drugs 2016; 76 (12):1221–6.

      126 126 Jhaveri MA, Kowdley KV. New developments in the treatment of primary biliary cholangitis ‐ role of obeticholic acid. Ther Clin Risk Manag 2017; 13:1053–60.

      127 127 Jindal A, Gupta A, Sarin S. Obeticholic acid in primary biliary cholangitis. N Engl J Med 2016; 375 (20):e41.

      128 128 Jones DE. Obeticholic acid for the treatment of primary biliary cirrhosis. Expert Rev Gastroenterol Hepatol 2016; 10(10):1091–1099.

      129 129 Silveira MG, Lindor KD. Obeticholic acid and budesonide for the treatment of primary biliary cirrhosis. Expert Opin Pharmacother 2014; 15(3):365–72.

      130 130 Forman BM, Goode E, Chen J, Oro AE, Bradley DJ, Perlmann T, et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 1995; 81(5):687–93.

      131 131 Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 1999; 284 (5418):1365–8.

      132 132 Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 1999; 3(5):543–53.

      133 133 Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J, et al. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 2000; 6(3):507–15.

      134 134 Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf DJ, Suchy FJ. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem 2001; 276 (31):28857–65.

      135 135 Frankenberg T, Rao A, Chen F, Haywood J, Shneider BL, Dawson PA. Regulation of the mouse organic solute transporter alpha‐beta, Ostalpha‐Ostbeta, by bile acids. Am J Physiol Gastrointest Liver Physiol 2006; 290(5):G912–22.

      136 136 Landrier JF, Eloranta JJ, Vavricka SR, Kullak‐Ublick GA. The nuclear receptor for bile acids, FXR, transactivates human organic solute transporter‐alpha and ‐beta genes. Am J Physiol Gastrointest Liver Physiol 2006; 290(3):G476–85.

      137 137 Hirschfield GM, Mason A, Luketic V, Lindor K, Gordon SC, Mayo M, et al. Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gastroenterology 2015; 148(4):751–61 e8.

      138 138 Ali AH, Lindor KD. Obeticholic acid for the treatment of primary biliary cholangitis. Expert Opin Pharmacother 2016; 17 (13):1809–15.

      139 139 Erlinger S. Obeticholic acid in primary biliary cholangitis. Clin Res Hepatol Gastroenterol 2017; 41(1):3–5.

      140 140 Nevens F, Lindor KD, Jones DE. Obeticholic acid in primary biliary cholangitis. N Engl J Med 2016; 375 (20):e41.

      141 141 Spacek LA, Solga SF. Obeticholic acid in primary biliary cholangitis. N Engl J Med. 2016; 375 (20):e41.

      142 142van Golen RF. Obeticholic acid in primary biliary cholangitis. N Engl J Med 2016; 375 (20):e41.

      143 143 Quigley G, Al Ani M, Nadir A. Occurrence of jaundice following simultaneous ursodeoxycholic acid cessation and obeticholic acid initiation. Dig Dis Sci 2018; 63(2):529–32.

      144 144 Chiang JY. Bile acid metabolism and signaling. Compr Physiol 2013; 3(3):1191–212.

      145 145 Li T, Chiang JY. Nuclear receptors in bile acid metabolism. Drug Metab Rev 2013; 45(1):145–55.

      146 146 Li T, Chiang JY. Bile acid signaling in liver metabolism and diseases. J Lipids 2012; 2012:754067.

      147 147 Edwards JE, Eliot L, Parkinson A, Karan S, MacConell L. Assessment of pharmacokinetic interactions between obeticholic acid and caffeine, midazolam, warfarin, dextromethorphan, omeprazole, rosuvastatin, and digoxin in phase 1 studies in healthy subjects. Adv Ther 2017; 34(9):2120–38.

      148 148 Zhang Y, Jackson JP, St Claire RL, 3rd, Freeman K, Brouwer KR, Edwards JE. Obeticholic acid, a selective farnesoid X receptor agonist, regulates bile acid homeostasis in sandwich‐cultured human hepatocytes. Pharmacol Res Perspect. 2017; 5(4), e00329.

      149 149 Guo C, LaCerte C, Edwards JE, Brouwer KR, Brouwer KLR. Farnesoid X receptor agonists obeticholic acid and chenodeoxycholic acid increase bile acid efflux in sandwich‐cultured human hepatocytes: functional evidence and mechanisms. J Pharmacol Exp Ther 2018; 365(2):413–21.

      150 150 Kahler CM, Graziadei I, Vogelsinger H, Desole S, Cima K, Vogel W. Successful treatment of portopulmonary hypertension with the selective endothelin receptor antagonist Sitaxentan. Wien Klin Wochenschr 2011; 123 (7–8):248–52.

      151 151 Scott LJ. Sitaxentan: in pulmonary arterial hypertension. Drugs 2007; 67(5):761–70; discussion 71‐2.

      152 152 Gholam P, Sehr T, Enk A, Hartmann M. Successful treatment of systemic‐sclerosis‐related digital ulcers with a selective endothelin type A receptor antagonist (sitaxentan). Dermatology 2009; 219(2):171–3.

      153 153 Zhang J, Kong W, Wang C. Mechanism of plasma endothelin‐1 level elevation and its relation with pulmonary hypertension in chronic cor pulmonale. Zhonghua Nei Ke Za Zhi 1996; 35(2):110–3.

      154 154 Galie N, Hoeper MM, Simon J, Gibbs R, Simonneau G, Task Force for the D, et al. Liver toxicity of sitaxentan in pulmonary arterial hypertension. Eur Heart J 2011; 32(4):386–7.

      155 155 Lavelle

Скачать книгу