Using Predictive Analytics to Improve Healthcare Outcomes. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Using Predictive Analytics to Improve Healthcare Outcomes - Группа авторов страница 13

Using Predictive Analytics to Improve Healthcare Outcomes - Группа авторов

Скачать книгу

Department of Nursing, University of Massachusetts Boston

      Management Team Facilitator, https://nursology.net

      Preface: Bringing the Science of Winning to Healthcare

      A few years before the publication of this book, I attended an international mathematics conference for research in simulation studies and predictive analytics. Out of more than 300 attendees, there was only one other attendee from healthcare. For three days there were presentations by researchers from the fields of logistics (trucking) and mining, reviewing how they used predictive analytics and simulation to proactively manage outcomes related to productivity and company output. Surely, I thought, the same kinds of mathematical formulas presented by the truckers and miners could be used in healthcare to move us from reactive use of data to a proactive approach.

      Currently, hospitals evaluate outcomes related to falls and infections using hindsight‐based analytics such as case studies, root cause analyses, and regression analyses, using retrospective data to understand why these outcomes occurred. Once the underlying causes for the outcomes are identified, the organization creates action plans for improving the outcomes. The problem with this process is that retrospective data provides only hindsight, which does nothing to create a profile of current or future risk. Healthcare organizations typically stop short of supporting prospective management of the data, which would allow for the collection of meaningful data about real‐life trends and what is actually happening in practice right now. Conversely, the truckers and miners at the conference showed how predictive analytics can be used to study risk for the purpose of managing unwanted outcomes before they occur. Since I am both a data scientist and a nurse, I could see clearly that the formulas from the math conference could apply to healthcare; all you would have to do is specify the models.

      Organizations that have embraced predictive analytics as a central part of operational refinement include Amazon, IBM (Bates, Suchi, Ohno‐Machado, Shah, & Escobar 2014), Harrah’s casino, Capital One, and the Boston Red Sox (Davenport 2006). In his 2004 book (and the 2011 film), Moneyball, Michael Lewis, documents an example of how in 2002 the Oakland A’s professional baseball team, which had the lowest payroll in baseball, somehow managed to win the most games. This paradox of winning the most games despite having the skimpiest budget in the league was due to an assistant general manager who used a baseball‐specific version of predictive analytics called sabermetrics to examine what combination of possible recruits would reach first base most reliably, and would therefore result in the team winning the most games. These recruits were not the most obvious players—in fact, they were not considered by almost anyone to be the best players. It was only predictive analytics that made them visible as the right players to comprise this winning team.

      If predictive analytics can help a team win more games, why couldn’t they help patients heal faster? Why couldn’t they help clinicians take better care of themselves? Why couldn’t predictive analytics be used to improve every outcome in healthcare?

      As a data scientist and operations analyst, it is my job to present data to healthcare leaders and staff members in a way that allows them to easily understand the data. Therefore, it is the job of this book to help people in healthcare understand how to use data in the most meaningful, relevant ways possible, in order to identify the smartest possible operational improvements.

      For decades, the three editors of this book have been conducting research to measure some of the most elusive aspects of caring. This book provides instructions and examples of how to develop models that are specified to the outcomes that matter most to you, thereby setting you up to use predictive analytics to definitively identify the most promising operational changes your unit or department can make, before you set out to change practice.

Скачать книгу