Applied Univariate, Bivariate, and Multivariate Statistics Using Python. Daniel J. Denis

Чтение книги онлайн.

Читать онлайн книгу Applied Univariate, Bivariate, and Multivariate Statistics Using Python - Daniel J. Denis страница 6

Applied Univariate, Bivariate, and Multivariate Statistics Using Python - Daniel J. Denis

Скачать книгу

208

      229  209

      230  210

      231  211

      232  212

      233  213

      234  214

      235  215

      236  216

      237 217

      238  218

      239  219

      240  220

      241  221

      242  222

      243  223

      244  224

      245  225

      246  226

      247  227

      248  228

      249  229

      250  230

      251 231

      252 232

      253  233

      254  234

      255  235

      256  236

      257  237

      258  238

      259  239

      260  240

      261  241

      262  242

      263  243

      264  244

      265  245

      266  246

      267  247

      268  248

      269  249

      270  250

      271  251

      272  252

      273  253

      274  254

      275  255

      276  256

      277  257

      278  258

      279  259

      280  260

      281  261

      282  262

      283  263

      284  264

      285  265

      286  266

      287  267

      288  268

      289  269

      290  270

      291  271

      292  272

      293  273

      294 274

      295 275

      296  276

      297  277

      298  278

      This book is an elementary beginner’s introduction to applied statistics using Python. It for the most part assumes no prior knowledge of statistics or data analysis, though a prior introductory course is desirable. It can be appropriately used in a 16-week course in statistics or data analysis at the advanced undergraduate or beginning graduate level in fields such as psychology, sociology, biology, forestry, education, nursing, chemistry, business, law, and other areas where making sense of data is a priority rather than formal theoretical statistics as one may have in a more specialized program in a statistics department. Mathematics used in the book is minimal and where math is used, every effort has been made to unpack and explain it as clearly as possible. The goal of the book is to obtain results using software rather quickly, while at the same time not completely dismissing important conceptual and theoretical features. After all, if you do not understand what the computer is producing, then the output will be quite meaningless. For deeper theoretical accounts, the reader is encouraged to consult other sources, such as the author’s more theoretical book, now in its second edition (Denis, 2021), or a number of other books on univariate and multivariate analysis (e.g., Izenman, 2008; Johnson and Wichern, 2007). The book you hold in your hands is merely meant to get your foot in the door, and so long as that is understood from the outset, it will be of great use to the newcomer or beginner in statistics and computing. It is hoped that you leave the book with a feeling of having better understood simple to relatively advanced statistics, while also experiencing a little bit of what Python is all about.

Скачать книгу