Machine Learning Approach for Cloud Data Analytics in IoT. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Machine Learning Approach for Cloud Data Analytics in IoT - Группа авторов страница 18
1.14 Conclusion
In its core, information processing requires the capability to give chase and break down vast quantities of mathematical data. The choice and decrease of unassisted knowledge, detailed estimates, grouping assessment strategies, and discovery of utilizing empirical, isolation, and circulation procedures are analyzed. Each segment concentrates on a clear and objective analysis of knowledge and thoughts related to guided and inaccurate learning. This is likewise conversant with different kinds of AI currently in office. Thinking critically how a machine manages large quantities of data. The method employed by AI determines the result of the learning phase and the results develop in this direction. Lots may be accomplished in the AI system before a computation. This determines how AI tests and analysis of different kinds of evidence effectively completes the knowledge discovery process.
References
1. Pandit, A. and Radstake, T.R., Machine learning in rheumatology approaches the clinic. Nat. Rev. Rheumatol., 2, 69–70, 2020.
2. Kulin, M., Kazaz, T., De Poorter, E., Moerman, I., A survey on machine learning-based performance improvement of wireless networks: PHY, MAC and network layer. Electronics, 3, 318, 2021.
3. Alsharif, M.H., Kelechi, A.H., Yahya, K., Chaudhry, S.A., Machine Learning Algorithms for Smart Data Analysis in the Internet of Things Environment: Taxonomies and Research Trends. Symmetry, 12, 1, 88, 2020.
4. Liu, C., Feng, Y., Lin, D., Wu, L., Guo, M., Iot based laundry services: an application of big data analytics, intelligent logistics management, and machine learning techniques. Int. J. Prod. Res., 58, 17, 5113–5131, 2020.
5. Roccetti, M., Delnevo, G., Casini, L. and Salomoni, P., A Cautionary Tale for Machine Learning Design: why we Still Need Human-Assisted Big Data Analysis. Mobile Networks Appl., 25, 1–9, 2020.
6. https://learning.oreilly.com/library/view/machine-learning-end-toend/9781788622219/index.html
7. https://learning.oreilly.com/library/view/machine-learning/9780128015223/Cover.xhtml
8. Zolanvari, M., Teixei ra, M.A., Gupta, L., Khan, K.M., Jain, R., Machine learning-based network vulnerability analysis of industrial Internet of Things. IEEE Internet Things J., 6, 4, 6822–6834, 2019.
9. da Costa, K.A.P., Papa, J.P., Lisboa, C.O., Munoz, R., de Albuquerque, V.H.C., Internet of Things: A survey on machine learning-based intrusion detection approaches. Comput. Networks, 151, 147–157, 2019.
10. Tuli, S., Basumatary, N., Gill, S.S., Kahani, M., Arya, R.C., Wander, G.S., Buyya, R., Healthfog: An ensemble deep learning based smart healthcare system for automatic diagnosis of heart diseases in integrated iot and fog computing environments. Future Gener. Comput. Syst., 104, 187–200, 2020.
11. Liang, F., Hatcher, W.G., Xu, G., Nguyen, J., Liao, W., Yu, W., Towards online deep learning-based energy forecasting. 2019 28th International Conference on Computer Communication and Networks (ICCCN), IEEE, pp. 1–9, 2019.
12. Ren, J., Wang, H., Hou, T., Zheng, S., Tang, C., Federated learning-based computation offloading optimization in edge computing-supported internet of things. IEEE Access, 7, 69194–69201, 2019.
13. Verma, A. and Ranga, V., Machine learning based intrusion detection systems for IoT applications. Wireless Pers. Commun., 111, 4, 2287–2310, 2020.
14. Msadek, N., Soua, R., Engel, T., Iot device fingerprinting: Machine learning based encrypted traffic analysis. 2019 IEEE Wireless Communications and Networking Conference (WCNC), IEEE, pp. 1–8, 2019.
15. Tuli, S., Basumatary, N., Buyya, R., Edgelens: Deep learning-based object detection in integrated iot, fog and cloud computing environments. 2019 4th International Conference on Information Systems and Computer Networks (ISCON), IEEE, pp. 496–502, 2019.
16. Luo, X.J., Oyedele, L.O., Ajayi, A.O., Monyei, C.G., Akinade, O.O., Akanbi, L.A., Development of an IoT-based big data platform for day-ahead prediction of building heating and cooling demands. Adv. Eng. Inf., 41, 100926, 2019.
17. Zafar, S., Jangsher, S., Bouachir, O., Aloqaily, M., Othman, J.B., QoS enhancement with deep learning-based interference prediction in mobile IoT. Comput. Commun., 148, 86–97, 2019.
18. Min, Q., Lu, Y., Liu, Z., Su, C., Wang, B., Machine learning based digital twin framework for production optimization in petrochemical industry. Int. J. Inf. Manage., 49, 502–519, 2019.
19. Garg, S., Kaur, K., Kumar, N., Kaddoum, G., Zomaya, A.Y., Ranjan, R., A hybrid deep learning-based model for anomaly detection in cloud datacenter networks. IEEE Trans. Netw. Serv. Manage., 16, 3, 924–935, 2019.
20. Tiwari, R., Sharma, N., Kaushik, I., Tiwari, A., Bhushan, B., Evolution of IoT & Data Analytics using Deep Learning. 2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), IEEE, pp. 418–423, 2019.
21. Sujatha, R., Nathiya, S., Chatterjee, J.M., Clinical Data Analysis Using IoT Data Analytics Platforms, in: Internet of Things Use Cases for the Healthcare Industry, pp. 271–293, Springer, Cham, 2020.
22. Potluri, S., Health record data analysis using wireless wearable technology device. JARDCS, 10, 9, 696–701, 2018.
23. Mangla, M., Akhare, R., Ambarkar, S., Context-Aware Automation Based Energy Conservation Techniques for IoT Ecosystem, in: Energy Conservation for IoT Devices, pp. 129–153, Springer, Singapore, 2019.
24. Akhare, R., Mangla, M., Deokar, S., Wadhwa, V., Proposed Framework for Fog Computing to Improve Quality-of-Service in IoT Applications, in: Fog Data Analytics for IoT Applications, pp. 123–143, Springer, Singapore, 2020.
25. Potluri, S., IOT Enabled Cloud Based Healthcare System Using Fog Computing: A Case Study. J. Crit. Rev., 7, 6, 1068–1072, 2020.
26. Chatterjee, J., IoT with Big Data Framework using Machine Learning Approach. Int. J. Mach. Learn. Networked Collab. Eng., 2, 02, 75–85, 2018.
27. Chatterjee, J.M., Priyadarshini, I., Le, D.N., Fog Computing and Its security issues, in: Security Designs for the Cloud, Iot, and Social Networking, pp. 59–76, 2019.
28. Shri, M.L., Devi, E.G., Balusamy, B., Chatterjee, J.M., Ontology-Based Information Retrieval and Matching in IoT Applications, in: Natural Language Processing in Artificial Intelligence, pp. 113–130, Apple Academic Press, India, 2020.
29. Kumar, A., Payal, M., Dixit, P., Chatterjee, J.M., Framework for Realization of Green Smart Cities Through