Nano-Technological Intervention in Agricultural Productivity. Javid A. Parray

Чтение книги онлайн.

Читать онлайн книгу Nano-Technological Intervention in Agricultural Productivity - Javid A. Parray страница 10

Nano-Technological Intervention in Agricultural Productivity - Javid A. Parray

Скачать книгу

plants [91]. The use of engineering materials would increase soil and groundwater NP concentrations, which provide the most significant exposure pathways for assessing environmental risk [92]. During the formation of natural NPs, the surface of NPs can be consumed, co‐precipitated, or stuck with the accumulation of NPs containing toxins adsorbed to their bodies by a vast specific‐to‐mass proportion of natural NPs. NP pollutants' interaction depends on the characteristics of NPs, such as scale, composition, morphology, porosity and aggregation, and structure [93]. The following attributes of NPs make the ideal theme candidate for environmentally friendly goods, sanitation of toxic substance‐contaminated materials, and ecological stage sensors [10]. Superparamagnetic iron oxide NPs are a valuable sorbent material for this harmful soft material [94, 95].

      NP photodegradation is also a generalized method, which includes the use of several nanomaterials. For photodegradation, Rogozea et al. revealed in a tandem fashion that modified silica NiO/ZnO has been productive because of the minimum size of the high NP surface (<10 nm) [96].

      In recent years, there has been rising interest in printed electronics production because printed electronics offer the potential for low‐cost, large‐area electronics for flexible displays and sensors appealing to conventional silicon techniques. As a mass manufacturing process for new forms of electronic equipment, printed electronics with various functional inks containing NPs such as metallic NPs, organic electronic molecules, CNTs, and ceramic NPs are expected to flow quickly [97, 98]. An excellent example of the synergies between scientific discovery and technological growth is the electronic industry. The findings of new semiconducting materials have led to a revolution from aspirated tubes to diodes and transistors and finally to miniature chips [10, 99]. The critical characteristics of NPs that make nanotechnology benchmarks [100] possible for NP to be used in electrical, electronic, or optical applications, including bottom‐up or self‐assembly frameworks, are easy handling.

      1 1 Feynman, R.P. (1960). There's plenty of room at the bottom. Eng. Sci. 22: 22–36.

      2 2 Khan, I., Saeed, K., and Khan, I. (2017). Nanoparticles: properties, applications and toxicities. Arabian J. Chem. 12: 908–931.

      3 3 Tiwari, J.N., Tiwari, R.N., and Kim, K.S. (2012). Zero‐dimensional, one‐dimensional, two‐dimensional and three‐dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 57: 724–803. https://doi.org/10.1016/j.pmatsci.2011.08.003.

      4 4 Dreaden, E.C., Alkilany, A.M., Huang, X. et al. (2012). The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 41: 2740–2779. https://doi.org/10.1039/C1CS15237H.

      5 5 Shin, W.K., Cho, J., Kannan, A.G. et al. (2016). Cross‐linked composite gel polymer electrolyte using mesoporous methacrylate‐functionalized SiO2 nanoparticles for lithium‐ion polymer batteries. Sci. Rep. 6: 26332. https://doi.org/10.1038/srep26332.

      6 6 Lee, J.E., Lee, N., Kim, T. et al. (2011). Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc. Chem. Res. 44: 893–902. https://doi.org/10.1021/ar2000259.

      7 7 Barrak, H., Saied, T., Chevallier, P. et al. (2016). Synthesis, characterization, and functionalization of ZnO nanoparticles by N‐(trimethoxysilylpropyl) ethylenediamine tri acetic acid (TMSEDTA): an investigation of the interactions between phloroglucinol and ZnO@TMSEDTA. Arabian J. Chem. https://doi.org/10.1016/j.arabjc.2016.04.019.

      8 8 Ullah, H., Khan, I., Yamani, Z.H., and Qurashi, A. (2017). Sonochemical‐driven ultrafast facile synthesis of SnO2 nanoparticles: growth mechanism structural electrical and hydrogen gas sensing properties. Ultrason. Sonochem. 34: 484–490. https://doi.org/10.1016/j.ultsonch.2016.06.025.

      9 9 Ramacharyulu, P.V.R.K., Muhammad, R., Praveen Kumar, J. et al. (2015). Iron phthalocyanine modified mesoporous titania nanoparticles for photocatalytic activity and CO2 capture applications. Phys. Chem. Chem. Phys. 17: 26456–26462. https://doi.org/10.1039/C5CP03576G.

      10 10 Shaalan, M., Saleh, M., El‐Mahdy, M., and El‐Matbouli, M. (2016). Recent progress in applications of nanoparticles in fish medicine: a review. Nanomed. Nanotechnol. Biol. Med. 12: 701–710. https://doi.org/10.1016/j.nano.2015.11.005.

      11 11 Astefanei, A., Núñez, O., and Galceran, M.T. (2015). Characterization and determination of fullerenes: a critical review. Anal. Chim. Acta 882: 1–21. https://doi.org/10.1016/j.aca.2015.03.025.

      12 12 Ibrahim, K.S. (2013). Carbon nanotubes‐properties and applications: a review. Carbon Lett. 14: 131–144. https://doi.org/10.5714/CL.2013.14.3.131.

      13 13 Aqel, A., El‐Nour, K.M.M.A., Ammar, R.A.A., and Al‐Warthan, A. (2012). Carbon nanotubes, science and technology part (I) structure, synthesis and characterization. Arabian J. Chem. 5: 1–23. https://doi.org/10.1016/j.arabjc.2010.08.022.

      14 14 Elliott, J.A., Shibuta, Y., Amara, H. et al. (2013). Atomistic modelling of CVD synthesis of carbon nanotubes and graphene. Nanoscale 5: 6662. https://doi.org/10.1039/c3nr01925j.

      15 15 Saeed, K. and Khan, I. (2016). Preparation and characterization of single‐walled carbon nanotube/nylon 6,6 nanocomposites. Instrum Sci. Technol. 44: 435–444. https://doi.org/10.1080/10739149.2015.1127256.

      16 16 Ngoy, J.M., Wagner, N., Riboldi, L., and Bolland, O. (2014). A CO2 capture technology using multi‐walled carbon nanotubes with polyaspartamide surfactant. Energy Procedia 63: 2230–2248. https://doi.org/10.1016/j.egypro.2014.11.242.

      17 17 Mabena, L.F., Sinha Ray, S., Mhlanga, S.D., and Coville, N.J. (2011). Nitrogen‐doped carbon nanotubes as a metal catalyst support. Appl. Nanosci. 1: 67–77. https://doi.org/10.1007/s13204-011-0013-4.

      18 18

Скачать книгу