Smart Grid and Enabling Technologies. Frede Blaabjerg

Чтение книги онлайн.

Читать онлайн книгу Smart Grid and Enabling Technologies - Frede Blaabjerg страница 14

Автор:
Жанр:
Серия:
Издательство:
Smart Grid and Enabling Technologies - Frede Blaabjerg

Скачать книгу

in Engineering across the world.

A photograph of Miroslav M. Begovic.

      Miroslav M. Begovic (FIEEE’04) is Department Head of Electrical and Computer Engineering and Carolyn S. & Tommie E. Lohman ‘59 Professor at Texas A&M University. Prior to that, he was Professor and Chair of the Electric Energy Research Group in the School of Electrical and Computer Engineering, and an affiliated faculty member of the Brook Byers Institute for Sustainable Systems and University Center of Excellence in Photovoltaic Research at Georgia Tech. Dr. Begovic obtained his PhD from Virginia Tech University. His research interests are in monitoring, analysis, and control of power systems, as well as development and applications of renewable and sustainable energy systems. For the Centennial Olympic Games in 1996 in Atlanta, he designed with Professor Ajeet Rohatgi, a 340 kW photovoltaic system on the roof of Aquatic Center at Georgia Tech, which at that time was the largest roof‐mounted PV system in the world. He has been a member of the IEEE PES Power System Relaying Committee for two decades and chaired a number of its working groups. Professor Begovic was Editor of the section on Transmission Systems and Smart Grids in the Springer Encyclopedia on Sustainability (published in 2012), coordinated by an Editorial Board consisting of five Nobel Prize Laureats, has also served as guest editor of the IET Generation, Transmission & Distribution Special Issue on Wide Area Monitoring and Control in 2010, authored one section of a book, nearly 200 journal and conference papers, two IEEE special publications, and delivered more than 100 keynote and invited presentations. He authored invited papers in three Special issues of IEEE Proceedings: on Future Energy Systems (2010), on Critical Infrastructures (2005) and on Renewable Energy (2001).

      Dr. Begovic is a Fellow of IEEE and member of Sigma Xi, Tau Beta Pi, Phi Kappa Phi and Eta Kappa Nu. Dr. Begovic is a former Chair of the Emerging Technologies Coordinating Committee of IEEE PES, IEEE PES Treasurer (2010–2011), IEEE PES Distinguished Lecturer, and serves as President of the IEEE Power and Energy Society.

      Acknowledgments

      We would like to take this opportunity to express our sincere appreciation to all the people who were directly or indirectly helpful in making this book a reality.

      We are grateful to the Qatar National Research Fund (a member of Qatar Foundation) for funding many of the research projects, whose outcomes helped us in preparing a major part of this book chapters. Chapters 1, 8, 9, and 17 for NPRP grant [NPRP12S‐0226‐190 158], chapter five for NPRP grant [NPRP9‐310‐2‐134], Chapters 10, 14 and 15 for NPRP grant [NPRP10‐0101‐170 082], and Chapter 6 for NPRP grant [NPRP12S‐0214‐190 083]. The statements made herein are solely the responsibility of the authors.

      Also, we appreciate the help from many colleagues and students for providing constructive feedback on the material and for help with the editing. Particular appreciation goes to Mohammad Saleh, Amira Mohammed, and Mohamed Massoudi.

      We are indebted to our family members for their continuous support, patience, and encouragement without which this book would not have been completed.

      Preface

      Smart grid (SG) is an emerging area of engineering and technology which integrates electricity, communication, and information infrastructures to ensure an efficient, clean, and reliable electric energy supply. This is an extremely complex field with different disciplines and engineering areas pooled together. This book aims to cover SG technologies and their applications in a systematic and comprehensive way. Different areas of SGs have been included in this book, such as architectural aspects of the SG, renewable energy integration, power electronics domination in the SG, energy storage technologies for SG applications, smart transportation, communication and security aspects, the pivotal role of artificial intelligence toward the evolution of SGs, SG challenges and barriers, standardization, and future vision. For this reason, the book has been written by experienced individuals who specialize in various areas of SGs.

      The objective of this book is to equip readers with up‐to‐date knowledge of the fundamentals, emerging grid structure, current research status, and future vision in the development and deployment of SGs. The concepts presented in this book include four main areas of SGs and its applications: Advanced SG Architecture which includes smart power systems, communication systems, information technology, security, and the advancement of microgrids. Renewables energies, entail technologies of both energy storages, and power electronics suitable for renewable energy systems and SG applications. SG applications are divided into fundamental and emerging applications. The fundamental applications refer to energy management strategies, reliability models, security, and privacy, in addition to promoting demand‐side management (DSM). Emerging applications include the deployment of electric vehicles (EVs) and mobile charging stations. SG tools are divided into crucial tools for distribution grids such as Big Data management and analytics, cloud management and monitoring tools, consumer engagement, and artificial intelligence for the SG, the requirements for the simulation tools and the recently adopted standards, in addition to the challenges and future business models of SGs.

Скачать книгу