Complications in Canine Cranial Cruciate Ligament Surgery. Ron Ben-Amotz

Чтение книги онлайн.

Читать онлайн книгу Complications in Canine Cranial Cruciate Ligament Surgery - Ron Ben-Amotz страница 25

Complications in Canine Cranial Cruciate Ligament Surgery - Ron Ben-Amotz

Скачать книгу

style="font-size:15px;">      43 43. Berrios‐Torres, S., Umscheid, C., Bratzler, D. et al. (2017). Centers for Disease Control and Prevention guideline for the prevention of surgical site infection. J. Am. Med. Assoc. Surg. 152 (8): 784–791.

      44 44. World Health Organization (2016). Global Guidelines for the Prevention of Surgical Site Infection. Geneva: WHO.

      45 45. Belo, L., Serrano, I., Cunha, E. et al. (2018). Skin asepsis protocols as a preventive measure of surgical site infections in dogs: chlorhexidine – alcohol versus povidone‐iodine. BMC Vet. Res. 14 (95): 1–6.

      46 46. Melekwe, G.O., Uwagie‐Ero, E.A., Zoaka, H.A., and Odigie, E.A. (2018). Comparative clinical effectiveness of preoperative skin antiseptic preparations of chlorhexidine gluconate and povidone iodine for preventing surgical site infections in dogs. Int. J. Vet. Sci. Med. 6 (1): 113–116.

      47 47. Andrade, N., Schmiedt, C.W., Cornell, K. et al. (2016). Survey of intraoperative bacterial contamination in dogs undergoing elective orthopedic surgery. Vet. Surg. 45: 214–222.

      48 48. Straw, R.C., Tomlinson, J.L., and Fales, W.H. (1987). Scalpel blade contamination with skin bacteria during orthopedic and neurosurgical procedures in dogs. Vet. Surg. 16: 25–30.

      49 49. Lioce, C.G., Davis, E.C., Bennett, J.W. et al. (2019). Scalpel blade contamination and risk of postoperative surgical site infection following abdominal incisions in dogs. BMC Res. Notes 12: 459.

      50 50. Belo, L., Serrano, I., Cunha, E. et al. (2020). Surgical blades as bacteria dissemination vehicles in dogs undergoing surgery −a pilot study. Biomed. Eng. Int. 2 (1): 25–29.

      51 51. Sturgeon, C., Lamport, A.I., Lloyd, D.H., and Muir, P. (2000). Bacterial contamination of suction tips used during surgical procedures performed on dogs and cats. Am. J. Vet. Res. 61 (7): 779–783.

      52 52. Medl, N., Guerrero, T.G., Holzle, L. et al. (2012). Intraoperative contamination of the suction tip in clean orthopedic surgeries in dogs and cats. Vet. Surg. 41: 254–260.

      53 53. Weese, J.S. (2008). A review of post‐operative infections in veterinary orthopaedic surgery. Vet. Comp. Orthop. Traumatol. 21: 99–105.

      54 54. Feßler, A.T., Schuenemann, R., Kadlec, K. et al. (2018). Methicillin‐resistant Staphylococcus aureus (MRSA) and methicillin‐resistant Staphylococcus pseudintermedius (MRSP) among employees and in the environment of a small animal hospital. Vet. Microbiol. 221: 153–158.

      55 55. Larson, E. (1995). APIC guidelines for handwashing and hand antisepsis in health care settings. Am. J. Infect. Control 23 (4): 251–269.

      56 56. Verwilghen, D.R., Mainil, J., Mastrocicco, E. et al. (2011). Surgical hand antisepsis in veterinary practice: evaluation of soap scrubs and alcohol based rub techniques. Vet. J. 190 (3): 372–377.

      57 57. Parienti, J.J., Thibon, P., Heller, R. et al. (2002). Hand‐rubbing with an aqueous alcoholic solution vs traditional surgical hand‐scrubbing and 30‐day surgical site infection rates. J. Am. Med. Assoc. 288 (6): 722–727.

      58 58. Hingst, V., Juditzki, I., Heeg, P., and Sonntag, H.‐G. (1992). Evaluation of the efficacy of surgical hand disinfection following a reduced application time of 3 instead of 5 minutes. J. Hosp. Infect. 20 (2): 79–86.

      59 59. Verwilghen, D. and Kampf, G. (2016). Letter to the editor: antibacterial efficacy of several surgical hand preparation products used by veterinary students. Vet. Surg. 45: 1118–1119.

      60 60. Hübner, N., Kampf, G., Kamp, P. et al. (2006). Does a preceding hand wash and drying time after surgical hand disinfection influence the efficacy of a propanol‐based hand rub? BMC Microbiol. 6: 57.

      61 61. Widmer, A.F., Rotter, M., Voss, A. et al. (2010). Surgical hand preparation: state‐of‐the‐art. J. Hosp. Infect. 74 (2): 112–122.

      62 62. Meakin, L.B., Gilman, O.P., Parsons, K.J. et al. (2016). Colored indicator undergloves increase the detection of glove perforations by surgeons during small animal orthopedic surgery: a randomized controlled trial. Vet. Surg. 45: 709–714.

      63 63. Hayes, G.M., Reynolds, D., Moens, N.M.M. et al. (2014). Investigation of incidence and risk factors for surgical glove perforation in small animal surgery. Vet. Surg. 43: 400–404.

      64 64. Stine, S.L., Odum, S.M., and Daniel Mertens, W. (2018). Protocol changes to reduce implant‐associated infection rate after tibial plateau leveling osteotomy: 703 dogs, 811 TPLO (2006–2014). Vet. Surg. 47: 481–489.

      65 65. Boothe, H.W. (2017). Instrument and tissue handling techniques. In: Veterinary Surgery, 2e (eds. S.A. Johnston and K.M. Tobias), 733. St Louis, MO: Elsevier.

      66 66. Cadman, C. (2016). The impact of surgical safety checklists on theatre departments: a critical review of the literature. J. Perioper. Pract. 26 (4): 62–71.

      67 67. Haynes, A., Weiser, T., Berry, W. et al. (2009). A surgical safety checklist to reduce morbidity and mortality in a global population. N. Engl. J. Med. 360: 491–499.

      68 68. Verwilghen, D. and Singh, A. (2015). Fighting surgical site infections in small animals: are we getting anywhere? Vet. Clin. North Am. Small Anim. Pract. 45 (2): 243–276.

      69 69. Gatineau, M., El‐warrak, A.O., Bolliger, C. et al. (2012). Effects of sterilization with hydrogen peroxide gas plasma, ethylene oxide, and steam on bioadhesive properties of nylon and polyethylene lines used for stabilization of canine stifle joints. Am. J. Vet. Res. 73: 1665–1659.

      70 70. Solano, M.A., Danielski, A., Kovach, K. et al. (2015). Locking plate and screw fixation after tibial plateau leveling osteotomy reduces postoperative infection rate in dogs over 50 kg. Vet. Surg. 44: 59–64.

      71 71. Singh, A., Walker, M., Rousseau, J., and Weese, J.S. (2013). Characterization of the biofilm forming ability of Staphylococcus pseudintermedius from dogs. BMC Vet. Res. 9: 93.

      72 72. Donlan, R.M. (2001). Biofilm formation: a clinically relevant microbiological process. Clin. Infect. Dis. 33: 1387–1392.

      73 73. Walker, M., Singh, A., Nazarali, A. et al. (2016). Evaluation of the impact of methicillin‐resistant Staphylococcus pseudintermedius biofilm formation on antimicrobial susceptibility. Vet. Surg. 45: 968–971.

      74 74. Azab, M.A., Allen, M.J., and Daniels, J.B. (2016). Evaluation of a silver‐impregnated coating to inhibit colonization of orthopaedic implants by biofilm forming methicillin‐resistant Staphylococcus pseudintermedius. Vet. Comp. Orthop. Traumatol. 29 (6): 347–350.

      75 75. Arciola, C.R., Campoccia, D., Speziale, P. et al. (2012). Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm‐resistant materials. Biomaterials 33 (26): 5967–5982.

      76 76. Konig, L., Klopfleisch, R., Kershaw, O., and Gruber, A.D. (2015). Prevalence of biofilms on surgical suture segments in wounds of dogs, cats, and horses. Vet. Pathol. 52 (2): 295–297.

      77 77. McCagherty, J., Yool, D.A., Paterson, G.K. et al. (2020). Investigation of the in vitro antimicrobial activity of triclosan‐coated suture material on bacteria commonly isolated from wounds in dogs. Am. J. Vet. Res. 81 (1): 84–90.

      78 78. Morrison, S., Singh, A., Rousseau, J. et al. (2015). Impact of polymethylmethacrylate additives on methicillin‐resistant Staphylococcus pseudintermedius biofilm formation in vitro. Am. J. Vet. Res. 76 (5): 395–401.

      79 79.

Скачать книгу