Foundations of Chemistry. Philippa B. Cranwell

Чтение книги онлайн.

Читать онлайн книгу Foundations of Chemistry - Philippa B. Cranwell страница 15

Foundations of Chemistry - Philippa B. Cranwell

Скачать книгу

A special case is a0 = 1 To multiply quantities with exponents just add the exponents together:
To divide quantities with exponents subtract the exponents:

Quantity Unit name Symbol and base units
Area square metre m2
Volume cubic metre m3
Velocity (speed) metre per second m s−1
Acceleration metre per second squared m s−2
Density kilogram per cubic metre kg m−3
Concentration mole per cubic metre mol m−3
Energy joule J = kg m2 s−2
Force newton N = J m−1 = kg m s−2
Pressure pascal Pa = N m−2 = kg m−1 s−2
Frequency hertz Hz = s−1

      It is very important when carrying out calculations to keep track of the units, as you will be expected to quote the units of your answers. Units of each value in a calculation multiply or cancel with each other, as shown in the example here:

       Acceleration is defined as the change in velocity (speed) divided by the time taken and can be represented by this equation: acceleration = .

       Replacing the quantities with their units, we obtain: acceleration = .

       The unit can also be written as s−1, so the units for acceleration are m s−1 × s−1.

       To multiply s−1 by s−1, we simply add the −1 superscripts: acceleration = m s−1 × s−1 = m s−2.

       If we know the speed of an object and wish to determine how far it travels in a certain time, we multiply the speed by the time: distance = speed × time.

       Inserting the units for speed and time gives us the unit for distance = m s−1 × s.

       To multiply s−1 by s, again we add the superscripts: distance = m s−1 × s = m. This gives us the answer for distance in the correct units of metres. You should always check your answer when doing calculations to make sure that the value you obtain and the units are sensible.

      Worked Example 0.1

      Determine the derived units for the following quantities using the definitions given:

      1 density =

      2 entropy =

      3 pressure =

      4 power =

       Solution

      1 density = = kg m−3

      2 entropy = = = kg m2 s−2 K−1

      3 pressure = = = = kg m s−2 × m−2 = kg m−1 s−2

      4 power = = = = kg m2 s−2 × s−1 = kg m2 s−3

      Take care!

      3 × 102 = 300 (i.e. two zeroes after the number before the decimal point) 3 × 10−2 = 0.03 (i.e. just one zero after the decimal point before the number)

      When a number is written in exponential form, it is called scientific notation. The standard format is that the number is written with one digit before the decimal point and the multiplier 10n is added after the number. The following examples show how numbers can be rewritten using scientific notation:

       4 is written as 4 × 100.Any number raised to the power of zero is equal to 1, so 100 = 1.

       42 is written as 4.2 × 101.It isn't usual to use the factors 100 and 101 unless specifically required to give an answer in scientific notation.

       242 is written as 2.42 × 102.

       2424 is written as 2.424 × 103.

      To express numbers smaller than 1 using scientific notation, i.e. a decimal number, the number is converted to a number between 1 and 10 and the exponential factor 10–n used to indicate the position of the decimal point, as in these examples:

       0.4 is written as 4 × 10−1.

       0.042 is written as 4.2 × 10−2.

       0.00242 is written as 2.42 × 10−3.

      Box

Скачать книгу