Laboratory Methods for Soil Health Analysis, Volume 2. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Laboratory Methods for Soil Health Analysis, Volume 2 - Группа авторов страница 26

Laboratory Methods for Soil Health Analysis, Volume 2 - Группа авторов

Скачать книгу

grassland cultivation sequence. Soil Sci. Soc. Am. J. 56:777–783. doi:10.2136/sssaj1992.03615995005600030017x

      11 Cambardella, C., and E. Elliott. 1994. Carbon and nitrogen dynamics of soil organic matter fractions from cultivated grassland soils. Soil Sci. Soc. Am. J. 58:123–130. doi:10.2136/sssaj1994.03615995005800010017x

      12 Carter, M.R. and Rennie, D.A. 1982. Changes in soil quality under zero tillage farming systems: distribution of microbial biomass and mineralizable C and N potentials. Canadian Journal of Soil Science, 62: 587–597. doi.org/10.4141%2Fcjss82‐066

      13 Dexter, A.R., G. Richard, D. Arrouays, E.A. Czyz, C. Jolivet, and O. Duval. 2008. Complexed organic matter controls soil physical properties. Geoderma 144:620–627. doi:10.1016/j.geoderma.2008.01.022

      14 Dıaz‐Zorita, M. and Grosso, G.A. 2000. Effect of soil texture, organic carbon and water retention on the compactability of soils from the Argentinean pampas . Soil and Tillage Research, 54: 121–126. doi.org/10.1016%2Fs0167‐1987%2800%2900089‐1

      15 Doran, J., and M. Zeiss. 2000. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 15:3–11. doi:10.1016/S0929‐1393(00)00067‐6

      16 Doran, J.W. 1980. Soil microbial and biochemical changes associated with reduced tillage. Soil Science Society of America Journal 44: 765–771. doi.org/10.2136%2Fsssaj1980.03615995004400040022x

      17 Emerson, W.W., 1995. Water‐retention, organic‐C and soil texture. Soil Research, 33: 241–251. doi.org/10.1071%2Fsr9950241

      18 Glaser, B., J. Lehmann, and W. Zech. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal‐ A review. Biol. Fertil. Soils 35:219–230. doi:10.1007/s00374‐002‐0466‐4

      19 Gougoulias, C., J.M. Clark, and L.J. Shaw. 2014. The role of soil microbes in the global carbon cycle: Tracking the below‐ground microbial processing of plant‐derived carbon for manipulating carbon dynamics in agricultural systems. J. Sci. Food Agric. 94:2362–2371. doi:10.1002/jsfa.6577

      20 Gupta, S.C. and Larson, W.E., 1979. A model for predicting packing density of soils using particle‐size distribution. Soil Science Society of America Journal, 43:758–764. doi.org/10.2136%2Fsssaj1979.03615995004300040028x

      21 Horwath, W. 2007. Carbon cycling and formation of soil organic matter. In: E.A. Paul, editor, Soil microbiology, ecology, and biochemistry. 3rd ed. Academic Press, Cambridge, MA. p. 303–339. doi:10.1016/B978‐0‐08‐047514‐1.50016‐0

      22 Hudson, B.D. 1994. Soil organic matter and available water capacity. Journal of Soil and Water Conservation, 49:189–194. doi.org/10.1201/9780429445552‐36

      23 Karlen, D.L., and C.W. Rice. 2015. Soil degradation: Will humankind ever learn? Sustainability 7:12490–12501. doi:10.3390/su70912490

      24 Kibblewhite, M.G., Ritz, K. and Swift, M.J., 2008. Soil health in agricultural systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 363: 685–701. doi.org/10.1098%2Frstb.2007.2178

      25 King, A.E., K.A. Congreves, B. Deen, K.E. Dunfield, R.P. Voroney, and C. Wagner‐Riddle. 2019. Quantifying the relationships between soil fraction mass, fraction carbon, and total soil carbon to assess mechanisms of physical protection. Soil Biol. Biochem. 135:95–107. doi:10.1016/j.soilbio.2019.04.019

      26 Koide, R.T., K. Petprakob, and M. Peoples. 2011. Quantitative analysis of biochar in field soil. Soil Biol. Biochem. 43:1563–1568. doi:10.1016/j.soilbio.2011.04.006

      27 Lal, R. & Follett, R. F. (2009). Priorities in soil carbon research in response to climate change. In R. Lal and R.F. Follett, editors, Soil carbon sequestration and the greenhouse effect, 57, 401‐410. doi:10.2136/sssaspecpub57.2ed.c23.

      28 Lal, R. 2015. Sequestering carbon and increasing productivity by conservation agriculture. J. Soil Water Conserv. 70:55A–62A. doi:10.2489/jswc.70.3.55A

      29 Larson, W.E., Pierce, F.J. 1994. The dynamics of soil quality as a measure of sustainable management. In: J.W. Doran, D.C. Coleman, D.F. Bezdicek, B.A. Stewart, (Eds.), Defining soil quality for a sustainable environment. SSSA, Madison, WI, pp. 37‐51.

      30 Lehmann, J., and M. Kleber. (2015) The contentious nature of soil organic matter. Nature, 528, S60–S67. doi:10.1038/nature16069.

      31 Leng, L., Huang, H., Li, H., Li, J., & Zhou, W. (2019). Biochar stability assessment methods: A review. The Science of the total environment, 647, 210–222. doi:10.1016/j.scitotenv.2018.07.402.

      32 Loeppert, R.H., and D.L. Suarez. (1996) Carbonate and Gypsum. In: D.L. Sparks, A.L. Page, P.A. Helmke, & R.H. Loeppert, editors, Methods of soil analysis, part 3: Chemical methods. Soil Science Society of America, American Society of Agronomy, Madison, WI. p. 437–474. doi:10.2136/sssabookser5.3.c15

      33 Lynch, J.M. and Panting, L.M. 1980. Cultivation and the soil biomass. Soil Biology and Biochemistry, 12:29–33. doi.org/10.1016%2F0038‐0717%2880%2990099‐1

      34 Magdoff, F.R. 1996. Soil organic matter fractions and implications for interpreting organic matter tests. In: F.R. Magdoff, M.A. Tabatabai, and E.A. Hanlon, Jr., editors, Soil organic matter: Analysis and interpretation. Spec. Publ. 46. Soil Science Society of America, Madison, WI., doi:10.2136/sssaspecpub46.

      35 McVay, K.A., Budde, J.A., Fabrizzi, K., Mikha, M.M., Rice, C.W., Schlegel, A.J., Peterson, D.E., Sweeney, D.W. and Thompson, C. 2006. Management effects on soil physical properties in long‐term tillage studies in Kansas. Soil Science Society of America Journal, 70: 434–438. doi.org/10.2136%2Fsssaj2005.0249

      36 Meersmans, J., B. Van Wesemael, and M. Van Molle. 2009. Determining soil organic carbon for agricultural soils: A comparison between the Walkley & Black and the dry combustion methods (north Belgium). Soil Use Manage. 25:346–353. doi:10.1111/j.1475‐2743.2009.00242.x

      37 Mortensen, J.L., and F.L. Himes. 1964. Soil organic matter. Chemistry of the Soil 2:206–241.

      38 Nelson, D.W., and L.E. Sommers. 1996. Total carbon, organic carbon, and organic matter. In: D.L. Sparks, Page, A. L., Helmke, P. A., & Loeppert, R. H. (Eds.). Methods of soil analysis, part 3: Chemical methods (5, 961‐1010). SSSA, ASA, Madison, WI.

      39 Oldfield, E.E., M.A. Bradford, and S.A. Wood. 2019. Global meta‐analysis of the relationship between soil organic matter and crop yields. Soil 5:15–32. doi:10.5194/soil‐5‐15‐2019

      40 Pan, G., P. Smith, and W. Pan. 2009. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agric. Ecosyst. Environ. 129:344–348. doi:10.1016/j.agee.2008.10.008

      41 Paustian, K., J. Lehmann, S. Ogle, D. Reay, G.P. Robertson, and P. Smith. 2016. Climate‐smart soils. Nature 532:49–57. doi:10.1038/nature17174

      42 Pribyl, D. 2010. A critical review of the conventional SOC to SOM conversion factor. Geoderma 156:75–83. doi:10.1016/j.geoderma.2010.02.003

      43 Puget, P., C. Chenu, and J. Balesdent. 1995. Total and young organic matter distributions in aggregates of silty cultivated soils. Eur. J. Soil Sci. 46:449–459. doi:10.1111/j.1365‐2389.1995.tb01341.x

      44 Puget, P., C. Chenu, and J. Balesdent. 2000. Dynamics of soil organic matter associated with particle‐size fractions of water‐stable aggregates. Eur. J. Soil Sci. 51:595–605. doi:10.1111/j.1365‐2389.2000.00353.x

      45 Rice, C.W., T.B. Moorman, and M. Beare. 1996. Role of microbial biomass carbon

Скачать книгу