Simulation and Analysis of Mathematical Methods in Real-Time Engineering Applications. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Simulation and Analysis of Mathematical Methods in Real-Time Engineering Applications - Группа авторов страница 18

Simulation and Analysis of Mathematical Methods in Real-Time Engineering Applications - Группа авторов

Скачать книгу

form a whole system. Here, computational tasks are executed by ED locally and are offloaded at EC [15].

      2 b) From EC to CC - ED generally sends the task to the EC. EC analyzes and decides if a particular task can be performed by it or if not, it sends it to the cloud to complete the task. This is the second category of Offloading flow [15].

      3 c) Many ECs combine together and form an edge system from EC to others - This being the third category of Offloading flow. When an EC receives a task, it is decided by EC whether to perform a particular task or to offload it to the EC server in the same system, which has a direct impact on offloading performance. To optimize execution delay and power consumption, cluster formation is carried out in a single scenario [15].

      4 d) The hierarchical offloading. The fourth category of offloading flow works in a tier/hierarchical system. A single task can be offloaded to local EC/cloud/several or a few of the tiers [15].

      1 a) One-to-one - This is the first offloading scenario. To optimize the offloading performance, one entity decides to offload a particular computational task or not. This application can depict many to one offloading as one entity (ED) can run on multiple applications by offloading data separately [15].

      2 b) One-to-many - Many EC servers is available in one too many offloading schemes. ED decides the offloading decision which includes whether to offload and to which server it should offload. This is the second offloading scenario [15].

      3 c) Many-to-one - As the name suggests, being the third of offloading scenarios, many EDs offload their tasks to one server. For optimizing the whole system, the decision is made by all the entities. The single server is responsible for making the decision for all Eds [15].

      4 d) Many-to-many - The fourth offloading scenario, i.e., many-to-many, being the most complex one, is the combination of one-to-many offloading and many-to-many offloading. The information from both EC and ED is required for decision making for the centralized offloading model in the many-to-many offloading scenario. Due to the complexity of solving the model, distributed method offloading is much needed [15].

       2.2.2.1 Offloading Techniques

      1 i) Offloading model - If a task is partitionable, it is divided into two offloading modes: Binary offloading mode, where the whole task is offloaded and the second is a partial mode where a partial task is offloaded.

      2 ii) Channel model - The channel model is divided into interference model and interference-free model depending on multiple access mode.Figure 2.6 Offloading techniques.

      3 iii) Computing the model-in computation model, the energy consumption and latency for task execution and task transmission depend on the computation and queue model.

      4 iv) Energy Harvesting Model - The energy harvesting is also used in managing the energy requirement, which is divided into deterministic and stochastic.

      Among those techniques, offloading based on a mathematical model is discussed in the next section.

Schematic illustration of Markov chain-based stochastic process.

      2.3.1 Introduction to Markov Chain Process and Offloading

      Working of Markov Chain Model - To statistically model random processes, the Markov chain model is one of a simple way. Markov Chain model is also defined as “A stochastic process containing random variables, transitioning from one state to another depending on certain assumptions and definite probabilistic rules” [19]. They are widely used in applications from text generation to financial modeling and auto-completion applications.

      Figure 2.6 illustrates the Stochastic process, which is further classified into Markov Chain, Semi Markov, Markov Decision, Hidden Markov and Queuing model.

      Markov chain describes a sequence of possible events where each event’s probability depends on the previous state event [20]. Semi-Markov model is an actual stochastic model that evolves with time by defining the state at every given time [21]. As the name itself implies for Markov Decision, it is a process of making decisions where partly random decisions are few and few are at the decision maker’s control [22]. In the Hidden Markov model, rather than being observables, the states are hidden [23]. The Queuing model helps predict the length of the queue and waiting time is predicted [23].

      The Markov chain decision process is a mathematical model that evaluates the system during the transition from one state to another to the probability rules. It can be classified into two types. They are discrete-time Markov decision chains and continuous-time Markov decision chains. Additionally, it can be classified based on the number of states taken to decide the next state. It will be defined as the first-order, second-order, and higher-order chains. There are many offloading schemes based on the Markov decision process [22, 23].

       2.3.1.1 Markov Chain Based Schemes

      The Markov chain is the mathematical system that transitions

Скачать книгу