Simulation and Analysis of Mathematical Methods in Real-Time Engineering Applications. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Simulation and Analysis of Mathematical Methods in Real-Time Engineering Applications - Группа авторов страница 4

Simulation and Analysis of Mathematical Methods in Real-Time Engineering Applications - Группа авторов

Скачать книгу

β=5, γ = π/6, Pr=0...Figure 12.4 Velocity outlines for several Nemours of γ. R=0.5, α = π/6, β=5, Sc=...Figure 12.5 Velocity outline for several Nemours of Gr. R=0.5, Pr=0.71, Ko=1, γ=...Figure 12.6 Velocity outline for several Nemours of Gm. R=0.5, M=1, Sc=0.6, Pr=0...Figure 12.7 Velocity outline for several Nemours of M. R=0.5, Sc=0.6, Pr=0.71, K...Figure 12.8 Velocity outline for several Nemours of Ko. R=0.5, M=1, Sc=0.6, Pr=0...Figure 12.9 Temperature outline for several Nemours of Q. R=0.5, M=1, Sc=0.6, Pr...Figure 12.10 Temperature outline for several Nemours of Pr. R=0.5, M=1, Sc=0.6, ...Figure 12.11 Temperature outline for several Nemours of R., Q=0.5, M=1, Sc=0.6, ...Figure 12.12 Concentration outline for several Nemours of Kr.Figure 12.13 Concentration outline for several Nemours of Sc.

      13 Chapter 13Figure 13.1 Paddy disease detection framework.Figure 13.2 RGB color image of Gall midge in paddy crop.Figure 13.3 Pre-processing of Gall midge insect.Figure 13.4 Deep CNN model.Figure 13.5 Deep CNN image denoising.Figure 13.6 Gray scale orientation.Figure 13.7 Histogram of inclination.Figure 13.8 Pest spot identification.Figure 13.9 (a) Input image; (b) Filtered image; (c) Boundary detection; (d) Rem...Figure 13.10 Accuracy performance analysis.

      14 Chapter 14Figure 14.1 Proposed framework using machine learning on the edge.Figure 14.2 Comparison of number of test cases.Figure 14.3 Comparison of testing time.

      List of Tables

      1 Chapter 1Table 1.1 Accuracy of classifiers.

      2 Chapter 2Table 2.1 Existing studies using deep learning in edge.

      3 Chapter 4Table 4.1 Protocols and its features.

      4 Chapter 8Table 8.1 Performance of biometric in forensic investigation.Table 8.2 List of datasets for various biometric identity.

      5 Chapter 9Table 9.1 Acronym used in the chapter.Table 9.2 Comparison of algorithms.

      6 Chapter 10Table 10.1 Data type for attributes of dataset.Table 10.2 Statistical description of dataset.Table 10.3 Correlation between attributes in dataset.Table 10.4 Dataset sample.Table 10.5 Comparison of the evaluation results.

      7 Chapter 11Table 11.1 Different architecture of deeper learning and its applications.

      8 Chapter 12Table 12.1 Skin friction (τ).Table 12.2 Nusselt numeral (Nu).Table 12.3 Sherwood numeral (Sh).

      9 Chapter 13Table 13.1 Sensors and their methodologies.Table 13.2 Pest of rice – sample dataset.Table 13.3 Gall midge – GLCM features.Table 13.4 Classification accuracy for paddy insect with SIFT features.

      10 Chapter 14Table 14.1 Test cases generated for each of the scenarios.Table 14.2 Comparison of end-user application testing at the edge with ML and ot...

      Pages

      1  v

      2  ii

      3  iii

      4  iv

      5  xv

      6  xvi

      7  xvii

      8  xviii

      9  xix

      10  1

      11  2

      12  3

      13  4

      14  5

      15  6

      16  7

      17  8

      18 9

      19  10

      20  11

      21  12

      22  13

      23  14

      24 15

      25  16

      26  17

      27  18

      28  19

      29  20

      30  21

      31  22

      32  23

      33  24

      34  25

      35 

Скачать книгу