Spectroscopy for Materials Characterization. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Spectroscopy for Materials Characterization - Группа авторов страница 23

Spectroscopy for Materials Characterization - Группа авторов

Скачать книгу

when the excitation light is suddenly removed, Eqs. (1.104) and (1.105) enable to determine the lifetime of fluorescence and of phosphorescence and to demonstrate that they are, respectively [18]:

      (1.112)equation

      (1.113)equation

      Considering the temperature dependence of the non‐radiative processes and their rate, these equations show that a lifetime dependence on temperature is present and that at low T the non‐radiative rates are canceled, enabling to evaluate the true radiative rate [18].

      The instrumentation used and the opportune choice of instrumental features strongly determine the results of a spectroscopy measurement. This paragraph is devoted to summarize the main components of the instrumentation and those technical features that distinguish them aiming to give the basis for an aware choice of parameters during an experiment or the opportunity to choose a good instrumental configuration for carrying out an appropriate experiment.

      1.3.1 Typical Block Diagram of Spectrometers

Schematic illustration of the instrumentations to carry out spectroscopy experiments. On the left, the components of an absorption spectrophotometer consisting of a light source, an entrance monochromator, the sample, and a detector are drawn. The double beam configuration is sketched by the beam splitter and the dashed arrow representing the reference beam. On the right, the scheme for an emission spectrofluorometer shows the additional exit monochromator and the side detector to record the emitted light.

      In the photoluminescence experiment, a spectrofluorometer is used where the source of radiation is placed before one monochromator (entrance) to select the wavelength (energy) to excite the sample. When an emission process is active, this is typically isotropic in space and the emitted light can be recorded everywhere. Usually, to avoid any interference with the transmitted light, the emission is recorded in the 90° geometry shown in Figure 1.7 or, seldom, in backscattering geometry (the emitted light is recorded in the same direction as the exciting light, the impinging and emerging rays form 180° angle, not reported). To determine the characteristics of the emitted light, a second monochromator (exit) is inserted after the sample to select the wavelength (energy) of the light. Finally, a detector is inserted that is connected to a computer (not reported).

      1.3.2 Light Sources

      The first element of a spectrometer, as shown in Figure 1.7, is the light source. Different types of sources are usually employed in ultraviolet‐visible‐infrared (UV‐Vis‐IR) spectroscopy [2, 10, 22].

       Incandescent lamp: it consists in a metallic filament (typically tungsten) inside a transparent glass bulb filled by halogen gas to maintain the filament. The filament is traversed by an electric current heating it by Joule effect and increasing its temperature [10]. A black body‐like emission occurs, giving a continuous spectrum comprising typically the Vis‐IR range.

       Discharge arc lamp: a couple of electrodes (anode and cathode) are inserted in a transparent glass bulb filled by a low‐pressure gas of a given element (e.g. H, Hg, Na, Xe). By applying a high voltage (~1000 V) to the electrodes, a discharge occurs through the gas ionizing it. The ionized gas emits characteristic lines by the transition of the electrons through the excited states of the element. The ensuing spectrum is a line spectrum with a continuous background related to the temperature and the pressure of the gas. It is usual, for spectroscopy, to use high‐pressure discharge lamps to enhance the continuous background and employ them in a large spectral range. In particular, lamps with Xe are used for UV‐Vis emission spectroscopy and with Deuterium for UV and up to vacuum‐UV absorption and emission.

       Laser [10]: various types of laser light are employed for spectroscopy due to their precise wavelength, spatial collimation, high intensity and time resolution in the pulsed regime [23]. These systems are realized with opportune cavities with reflecting walls to obtain the lasing effect.

      Gas lasers (e.g. He–Ne: 633 nm; Ar: 514.5 nm; Kr: 647 nm) employ an electric discharge to ionize a low‐pressure gas and induce the population inversion. Typically, they are characterized by continuous wave emission.

      Excimer lasers use mixture of gases [Xe, HCl, Ne (as buffer); Kr, F, He (as buffer)] at high pressure to obtain molecular complexes in the excited state (XeCl*, KrF*) through an electric discharge. During the excited state decay, a laser pulse is generated with duration in the window 5–20 ns. The population inversion is related to the disappearance of the ground state once the complex, which is unstable, dissociates.

      Dye lasers use organic molecules in solution as laser active medium with emission in the range 300–1000 nm depending on the dye. The emission

Скачать книгу