Подготовка набора данных для обучения и тестирования программного обеспечения на основе технологии искусственного интеллекта. Учебное пособие. Юрий Александрович Васильев

Чтение книги онлайн.

Читать онлайн книгу Подготовка набора данных для обучения и тестирования программного обеспечения на основе технологии искусственного интеллекта. Учебное пособие - Юрий Александрович Васильев страница 9

Подготовка набора данных для обучения и тестирования программного обеспечения на основе технологии искусственного интеллекта. Учебное пособие - Юрий Александрович Васильев

Скачать книгу

уровнем доступа.

      По уровню доступа НД разделяются на общедоступные (открытые), ограниченного доступа (закрытые) и закрытые с общедоступными примерами. Общедоступные НД размещаются в открытом доступе (так называемые библиотеки НД) и предназначены для использования разработчиками ПО на основе ТИИ для проведения обучения, тестирования и/или валидации своей разработки.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «Литрес».

      Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

      Примечания

      1

      Приказ Министерства труда и социальной защиты Российской Федерации от 07.11.2017 №768н «Об утверждении профессионального стандарта „Специалист в области организации здравоохранения и общественного здоровья“».

      2

      Приказ Министерства труда и социальной защиты Российской Федерации от 19.03.2019 №160н «Об утверждении профессионального стандарта „Врач-рентгенолог“».

      3

      Приказ Министерства труда и социальной защиты Российской Федерации от 02.08.2021 №531н «Об утверждении профессионального стандарта „Специалист по тестированию в области информационных технологий“».

      4

      Гусев А. В. Перспективы нейронных сетей и глубокого машинного обучения в создании решений для здравоохранения // Врач и информационные технологии. 2017. №3. С. 92—105 URL: https://www.idmz.ru/jurnali/vrach-i-informatsionnye-tekhnologii/2017/3/perspektivy-neironnykh-setei-i-glubokogo-mashinnogo-obucheniia-v-sozdanii-reshenii-dlia-zdravookhraneniia.

      5

      Гусев А. В., Добриднюк С. Л. Искусственный интеллект в медицине и здравоохранении // Информационное общество. 2017. №4—5. С. 78—93.

      6

      Соболева С. У., Голиков В. В., Тажибов А. А. Информационные технологии в здравоохранении: особенности отраслевого применения // E-Management. State University of Management, 2021. Т. 4, №2. С. 37—43.

      7

      Dash S., Shakyawar S. K., Sharma M. et al. Big data in healthcare: management, analysis and future prospects // J Big Data. SpringerOpen. 2019. Vol. 6, №1. P. 1—25.

      8

      Shakhabov I. V., Melnikov Yu. Yu., Smyshlyaev A. V. Development of digital technologies in healthcare during the COVID-19 pandemic // Scientific Review. Medical Sciences. 2020. №6. P. 66—71.

      9

      Henriksen E. L. Carlsen F., Vejborg I. M. et al. The efficacy of using computer-aided detection (CAD) for detection of breast cancer in mammography screening: a systematic review // Acta radiol. 2019. Vol. 60, №1. P. 13—18.

      10

      Lauritzen A. D., Rodríguez-Ruiz A., von Euler-Chelpin M. C. et al. An Artificial Intelligence—based Mammography Screening Protocol for Breast Cancer: Outcome and Radiologist Workload // Radiology. 2022. Vol. 304, №1. P. 41—49.

      11

      Морозов С. П., Гаврилов А. В., Архипов И. В. [и др.]. Влияние технологий искусственного интеллекта на длительность

Скачать книгу