Искусственные внешние ресурсы для освоения космоса. Алексей Леонидович Полюх
Чтение книги онлайн.
Читать онлайн книгу Искусственные внешние ресурсы для освоения космоса - Алексей Леонидович Полюх страница 3
***
Но есть ещё вторая концепция, прямо не связанная с первой, но дополняющая её, и столь же важная. Вместе они могут создать фундамент для действительно полноценного освоения космоса.
Я предложил эффективный двигатель; но для него, однако, надо много энергии. В принципе, всё не так уж плохо – с помощью электромагнитных пушек всё же можно довести скорость носителей кинетической энергии до 20-30 км/с, и успешно осваивать ближайшие планеты. Но чтобы лететь дальше, и быстрее – энергии надо намного больше.
И вот тут оказывается, что энергию можно вовсе даже не тратить. А даже вовсе наоборот получать, и столько, что больше уже никому никогда не понадобится. Надо только немного подумать:)
Эту идею предложили задолго до меня, 55 лет назад. (Возможно, я даже когда-то в детстве читал эту статью, хотя потом забыл про это; но где-то в подсознании эта идея засела, и потом зудела там следующие 30 лет, превратившись в то, во что она превратилась, в главе 4 и последующих).
54 года назад в журнале "Техника-Молодёжи" (1970/11, с.56-58) была опубликована статья известного писателя-фантаста Георгия Гуревича "Увлекательная гравитация", где он предлагал проект гравитационной электростанции на лунном веществе: запускаем снаряд с поверхности Луны за 3 МДж энергии, ловим на Земле (или на низкой орбите) – получаем 60 МДж/кг. (На 30% больше, чем при сгорании килограмма бензина).
Как источник энергии для наземных объектов дороговато, но можно использовать в качестве источника внешнего топлива для вывода грузов на околоземную орбиту: если микро снаряды будут догонять ракету с относительной скоростью 11 км/с, то после их испарения в сопле двигателя и вылета газа обратно, получится удельный импульс 19-20 км/с, что очень хорошо. Правда, по мере разгона самой ракеты, относительная скорость снарядов, и соответственно передаваемый ими ракете импульс, будет уменьшаться, но даже при относительной скорости всего 3 км/с (т.е. при достижении ракетой первой космической скорости) удельный импульс составит 5 км/с при испарении пассивного вещества (например гидразина, перекиси или СО2), и до 8 км/с при стрельбе топливными капсулами с кислородно-водородной смесью, что всё ещё лучше, чем показатели обычного химического топлива; причём, это топливо находится не в ракете. Масса ракеты, при разгоне от 0 до 8 км/с, вообще не изменится. Достаточно вначале подбросить ракету вертикально вверх на 100 км (из катапульты или с помощью небольшого возвращаемого твердотопливного ускорителя), и дальше её можно разгонять бесплатно (пока снаряды могут её догнать с относительной скоростью хотя бы 2-3 км/с).
Я, (независимо от Георгия Гуревича и Жюля Верна :) лунный вариант тоже рассматривал, но в основной текст не включил,