Lectures on the Philosophy of the Human Mind (Vol. 1 of 3). Brown Thomas

Чтение книги онлайн.

Читать онлайн книгу Lectures on the Philosophy of the Human Mind (Vol. 1 of 3) - Brown Thomas страница 20

Lectures on the Philosophy of the Human Mind (Vol. 1 of 3) - Brown Thomas

Скачать книгу

we should then see, not merely what corpuscular changes take place in them, but why these changes take place in them; and should thus be able to predict, before experience, the effects which they would reciprocally produce. “I doubt not,” says Locke, “but if we could discover the figure, size, texture, and motion of the minute constituent parts of any two bodies, we should know without trial several of their operations one upon another, as we do now the properties of a square or a triangle. Did we know the mechanical affections of the particles of rhubarb, hemlock, opium, and a man; as a watch-maker does those of a watch, whereby it performs its operations, and of a file, which by rubbing on them will alter the figure of any of the wheels; we should be able to tell before-hand, that rhubarb will purge, hemlock kill, and opium make a man sleep; as well as a watch-maker can, that a little piece of paper laid on the balance will keep the watch from going, till it be removed; or that, some small part of it being rubbed by a file, the machine would quite lose its motion, and the watch go no more. The dissolving of silver in aquafortis, and gold in aqua regia, and not vice versa, would be then perhaps no more difficult to know, than it is to a smith to understand why the turning of one key will open a lock, and not the turning of another. But while we are destitute of senses acute enough to discover the minute particles of bodies, and to give us ideas of the mechanical affections, we must be content to be ignorant of their properties and ways of operation; nor can we be assured about them any farther, than some few trials we make are able to reach. But whether they will succeed again another time, we cannot be certain. This hinders our certain knowledge of universal truths concerning natural bodies: and our reason carries us herein very little beyond particular matter of fact.

      “And therefore I am apt to doubt, that how far soever human industry may advance useful and experimental philosophy in physical things, scientifical will still be out of our reach; because we want perfect and adequate ideas of those very bodies which are nearest to us, and most under our command. Those which we have ranked into classes under names, and we think ourselves best acquainted with, we have but very imperfect and incomplete ideas of. Distinct ideas of the several sorts of bodies that fall under the examination of our senses perhaps we may have; but adequate ideas, I suspect, we have not of any one among them. And though the former of these will serve us for common use and discourse, yet while we want the latter, we are not capable of scientifical knowledge; nor shall ever be able to discover general, instructive, unquestionable truths concerning them. Certainty and demonstration are things we must not, in these matters, pretend to. By the colour, figure, taste, and smell, and other sensible qualities, we have as clear and distinct ideas of sage and hemlock, as we have of a circle and a triangle; but having no ideas of the particular primary qualities of the minute parts of either of these plants, nor of other bodies which we would apply them to, we cannot tell what effects they will produce; nor when we see those effects, can we so much as guess, much less know, their manner of production. Thus having no ideas of the particular mechanical affections of the minute parts of bodies that are within our view and reach, we are ignorant of their constitutions, powers, and operations: and of bodies more remote we are yet more ignorant, not knowing so much as their very outward shapes, or the sensible and grosser parts of their constitutions.”25

      The fallacy of the reasoning of this very eminent philosopher consists partly, in the present case, in a sort of petitio principii, or, at least, a false assumption that is involved in the very phrase mechanical affections, and in all the mechanical illustrations adduced. If rhubarb purge, and hemlock kill, by qualities that can be said to be mechanical, and if these qualities be PERMANENT, there can be no question, that to know accurately the mechanical qualities of these substances, in relation to the human body, would be to know, that rhubarb must purge, and hemlock kill, as much as to know the mechanism of a watch would be to know, that the watch must stop, if a small part of it were rubbed by a file. But the inquiry is still left, whether it be thus, by the mere principles of mechanical action, that rhubarb and hemlock produce their peculiar effects on the animal system, and that silver is dissolved in aqua fortis, and gold in aqua regia; and, if there be no reason whatever to suppose this, we must then surely admit that the prophecy would still be beyond our power, though we were acquainted with “the figure, size, texture, and motion, of the minute constituent parts” of the different bodies. In the same manner, as, in the mechanical division of a substance, we must still come to other substances capable of further division, so, though we could reduce all the changes that appear to be wrought in the great masses around us, to the changes wrought in their minute parts, we must still come to certain ultimate changes as inexplicable as those which we see at present. It is as difficult to predict, without experience, the motion of one atom to or from another atom, as the motion of one mass of atoms to or from another mass of atoms. That the globe of the earth should tend towards the sun, which is at so great a distance from it, and should thus be every moment arrested within that orbit, from which, if there were no such deflecting force, it would every moment have a tendency to escape by flying off in a straight line, is, indeed, most wonderful. But precisely the same laws which operate on the whole globe of the earth, operate on every particle of which the earth is composed, – since the earth itself is only these separate particles under another name; and if it be wonderful that all of these should have a tendency to approach the sun, it must be equally wonderful, that each minute constituent particle should tend individually, though, to use Mr Locke's words, we were accurately acquainted with the “figure, size, texture, and motion of each.” The same original mystery of gravitation, then, would remain, though our senses enabled us to discover every gravitating particle in the intimate structure of the gravitating mass. By knowing the intimate structure of bodies, we should indeed, know what were their elements mutually affected, but not why these elements were mutually affected, or were affected in one way rather than in another.

      The chief error of Mr Locke, in this respect, evidently consisted, as I have said, in his assumption of the very thing to be proved, by taking for granted, that all the changes of bodies are the effects of their immediate contact and impulse, and of a kind, therefore, which may be termed strictly mechanical, – an assumption, indeed, which harmonized with the mathematical chemistry and medicine of the age in which he lived, but of the justness of which there is not the slightest evidence in the general phenomena, chemical and nervous, of which he speaks. If, instead of confining his attention to the action of bodies in apparent contact, he had turned his thought to the great distant agencies of nature in the motions of the planetary world, it is scarcely possible to conceive that he should not have discovered his mistake. In another of his works, his Elements of Natural Philosophy, he has stated very justly, as a consequence of the law of gravitation, that if the earth were the sole body in the universe, and at rest, and the moon were suddenly created at the same distance from the earth as at present, the earth and the moon would instantly begin to move towards one another in a straight line. What knowledge of the “figure, size, and texture,” of the particles of the earth could have enabled its human inhabitants to predict this instant change? and if the particles of gold and aqua regia, and of hemlock, rhubarb, and opium, which, together with all the other particles of our globe, would in the case supposed, instantly begin to move towards the moon, – can thus attract and be attracted, in gravitation, with tendencies that are independent of every mechanical affection, what authority can there be for supposing, that the chemical and vital agencies of the same particles must be mechanical, or that the one set of changes could have been predicted a priori, if the other was confessedly beyond the power of philosophic divination?

      But even with regard to the mechanical affections of matter themselves, though all the changes which take place in nature were truly reducible to them, we should still have ultimately the same difficulty in attempting to predict, without experience, the changes that would ensue from them. The mechanical properties are indeed the most familiar to our thought, because they are those which we are constantly witnessing in the great displays of human power that are most striking to our senses. The house, the bridge, the carriage, the vessel, every implement which we use, and the whole wide surface of the cultivated earth, present to us, as it were, one universal trophy of the victories of the great mechanist, man. We cannot look back to the time when we were ignorant of the mechanical properties of matter; but still there was a time when they first became known to us, and became known by

Скачать книгу


<p>25</p>

Essay concerning Human Understanding, book iv. c. 3. sec. 25, 26.