Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния. Дэвид Самптер

Чтение книги онлайн.

Читать онлайн книгу Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния - Дэвид Самптер страница 12

Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния - Дэвид Самптер Спорт. Лучший мировой опыт

Скачать книгу

другу. Но есть и несколько повторяющихся сходств. Во-первых, идея покрыть треугольниками весь мир. Слизевики покрывают небольшую площадь лесной подстилки, «Барселона» заполняет поле потенциальными передачами, а хорошая железнодорожная служба связывает страну железнодорожными магистралями.

      Еще одно важное сходство состоит в том, что между различными вариантами в связующих узлах лежат большие углы. Если мы поворачиваем на 360° вокруг центральных точек сети слизевиков или железных дорог, мы обнаруживаем, что во всех направлениях есть равномерно расположенные варианты – как мы видели в «Барселоне».

      Рисунок 2.4. Сеть и зоны «Барселоны» в сезоне-2010/11. Сеть расположения (сплошные линии) вместе с зонами (пунктирные линии) для каждого игрока (слева); типичная позиция для каждого игрока в течение сезона (справа).

      Существует математическая связь между сетями с широким треугольником и эффективным использованием пространства. Схемы разбивки на треугольники, которые я построил, могут быть использованы также для того, чтобы рассмотреть, как команда делит поле на зоны[15]. Полученные для «Барселоны» зоны показаны на рисунке 2.4. Слева – сеть игроков и созданные ею зоны (пунктирные линии). Справа я убрал сеть, оставив только зоны, и добавил игроков, которые были в каждой из зон в сезоне-2010/11.

      Тот факт, что мозаика зон в схеме 4–3–3 «Барселоны» своей симметричной красотой похожа на сеть их передач, не случаен – это математическая необходимость.

      Когда команда строит сеть с широкоугольными треугольниками, она также разделяет область на просторные зоны. Аналогично если каждый игрок занимает точно определенную позицию, то образовывается широкоугольная сеть треугольников[16]. Этот момент имеет решающее значение: он говорит нам, что решение одной проблемы даст нам решение и для второй. Если команда хорошо занимает пространство, игроки найдут много удачных возможностей отдать пас. Если они открываются для получения паса, они поймут, что создали свободное пространство. Игрокам не нужно вычислять все углы к своим партнерам – они просто должны убедиться, что у них достаточно места, чтобы принять мяч и сделать передачу.

      Симметрия – это ключ к стилю игры, который часто называют тики-такой. Суть такого футбола заключается в быстром передвижении мяча между игроками, чтобы создать дисбаланс в обороне соперника. Для математического представления тики-таки нам нужно понять немного больше о том, как определяются зоны. Мы говорим, что игрок противоположной команды находится в зоне Иньесты, если Иньеста является ближайшим к нему игроком «Барселоны». Каждая пунктирная линия на рисунке 2.4 обозначает границу между двумя пространствами. Если игрок противоположной команды стоит на одной из этих линий, он одинаково близок к двум игрокам «Барселоны».

      Представьте себе, что я стою на границе между зонами Иньесты и Месси, так что одинаково близок к ним обоим. Это, вероятно, худшее место на футбольном поле,

Скачать книгу


<p>15</p>

Зоны, которые я вычисляю здесь, как я объясню ниже в основном тексте, представляют собой наборы точек, наиболее близкие к каждому игроку. Таким образом, все точки в игровых зонах – это те, которые ближе к этому игроку, и никакому другому. Это разбиение известно как диаграмма Вороного, в честь украинского математика Георгия Вороного.

<p>16</p>

Для вычисления триангуляции сначала используем диаграмму Вороного для расчета зон. Затем мы берем центральные точки всех зон диаграммы Вороного (то есть игроков) и рисуем связи между ними, если они имеют соседние зоны, чтобы создать триангуляцию Делоне. Для сети «Барселоны» первое и второе минимальное остовное дерево содержат большинство краев триангуляции Делоне. Триангуляции Делоне имеют тенденцию максимизировать углы в соединительных сетях, а диаграмма Вороного максимизирует размеры зон. Мы можем переключать взаимозаменяемость между двумя: каждая диаграмма Вороного имеет эквивалентную триангуляцию Делоне, и наоборот. Поэтому, когда мы максимизируем углы, мы максимизируем зоны, и наоборот.