Conceptos avanzados del diseño estructural con madera. Pablo Guindos
Чтение книги онлайн.
Читать онлайн книгу Conceptos avanzados del diseño estructural con madera - Pablo Guindos страница 8
Y la verificación básica de la capacidad resistente consiste en comparar la fuerza de diseño con la capacidad total
En el caso de la capacidad axial, suele asumirse que no existe efectos de grupo (a excepción del CLT, ver Capítulo 1 del libro “Conceptos avanzados del diseño estructural con madera. Parte II”) tal que por lo general
Verificación de la capacidad con conectores o cargas inclinadas
En la práctica, la verificación anterior puede ser más complicada porque los conectores pueden estar cargados simultáneamente por una fuerza lateral y una fuerza axial. Esto puede suceder o bien porque están inclinados, o porque la resultante de la fuerza presenta un ángulo respecto del plano de corte o por ambos motivos.
Tradicionalmente se han empleado conectores inclinados tales como clavos o tirafondos en numerosas ocasiones, tales como por ejemplo el uso de clavos lanceros en la unión entre pies derechos y soleras. La verificación en dichas situaciones se encuentra normada en la mayoría de códigos de construcción incluyendo la NCh1198, lo que se detalla al final de esta sección.
Sin embargo, en los últimos tiempos se ha incrementado exponencialmente el uso de tornillos autoperforantes roscados en toda su longitud para la transmisión de cargas. El incremento en el uso de estos conectores se debe principalmente a que permiten transferir mayores cargas y de forma más homogénea en toda la sección. Así por ejemplo, en una unión mecánica convencional la carga que puede transferirse es del orden de 0.5-0.7 veces la capacidad máxima de los miembros que une. Sin embargo, para los tornillos inclinados la eficiencia puede incrementarse significativamente. Otra característica que puede ser ventajosa en ocasiones (especialmente para uniones elásticas) es que permiten incrementar la rigidez del orden de 6-8 veces en comparación a la rigidez de un tornillo perpendicular. El cálculo de este tipo de conectores en la práctica se realiza empleando parcial o totalmente especificaciones de los fabricantes. Así por ejemplo en Chile el uso de este tipo de tornillos no se encuentra normado.
Los beneficios de rigidez y capacidad se obtienen únicamente cuando los tornillos están traccionados. De hecho, la capacidad y rigidez de un tornillo inclinado comprimido puede ser inferior a los valores perpendiculares. En caso de que la combinación de carga que gobierna el diseño sea estática, los tornillos deben disponerse a tracción. Si la combinación es dinámica los tornillos deben disponerse por parejas en cruz. Cuando los tornillos se encuentran traccionados o en cruz, la rigidez axial claramente domina la transmisión de carga y es posible la aplicación de un método de cálculo simplificado tal como se ilustra en la Figura 1.2.4.1. Por otra parte, si es que los tornillos se encuentran poco inclinados, del orden de 60 a 90˚, la rigidez axial puede no dominar el sistema y es recomendable aplicar un método de cálculo detallado que considere ambos mecanismos de transmisión de carga, tal como se ilustra en la Figura 1.2.4.2. El resumen de las verificaciones para todos los casos se presenta en la Tabla 1.2.4. Los detalles de los métodos de cálculo detallados (considerando ambas rigideces) se pueden revisar en el Capítulo 9 del libro “Fundamentos del diseño y la construcción con madera”. Algunos casos más complejos que los que se detallan en la Tabla 1.2.4, por ejemplo para vectores fuerza con tres componentes respecto de los conectores, se detallan en el Capítulo 1 del libro “Conceptos avanzados del diseño estructural con madera. Parte II”; estos casos más complejos se producen principalmente en el diseño con CLT.
En la aplicación de metodologías de verificación, es importante notar que para tornillos traccionados debería considerarse siempre el efecto cuerda, especialmente para inclinaciones considerables entorno a α = 45˚ ya que una parte importante de la capacidad viene dada por la fricción entre piezas. Por supuesto la inclusión del efecto cuerda se excluye cuando existe además del corte una fuerza de tracción que tiende a separar las piezas (ver Figura 1.2.4.1). Tampoco debe considerarse nunca el efecto cuerda en uniones en cruz ya que la compresión del plano de corte ejercida por el tornillo traccionado se anula por el efecto de la tracción hacia el plano de corte ejercida por el tornillo comprimido.
figura 1.2.4.1 Resumen de las metodologías de cálculo simplificadas para tornillos inclinados. Cuando α = 45-60˚ la transmisión de carga sucede principalmente vía rigidez axial de los tornillos así es que la capacidad viene determinada fundamentalmente por Rax. |
figura 1.2.4.2 Resumen de las metodologías de cálculo detalladas para tornillos inclinados. Cuando α = 60-90˚ la transmisión de carga sucede tanto por rigidez axial como rigidez de aplastamiento así es que la verificación debe realizarse con metodologías detalladas que combinen ambos mecanismos. En la aplicación del método de Bejtka y Blass debe tenerse cuidado de que α no es el ángulo entre tornillo-fibra sino tornillo-línea perpendicular al plano de corte. |
tabla 1.2.4 Resumen del procedimiento general de verificación de conectores simples según el tipo de solicitación sobre éstos. Las verificaciones inclinadas se refieren a tornillos de rosca total, para verificaciones de clavos y otros conectores inclinados ver párrafos posteriores. | |
Unión | Verificación |
Lateral | |
Axial | |
Inclinada(tornillos) | Método simplificado, i.e. rigidez axial dominante por α = 45-60˚, y tornillos en tracción por corte (Fx) y además tracción perpendicular al plano de corte (Fy, ver Figura 1.2.4.1). La fuerza de separación del plano de corte (Fy) obliga a omitir el efecto cuerda tal que |
Método simplificado. Similar al anterior, pero sin Fy, lo que permite aplicar efecto cuerda. | |
Método simplificado. Tornillos en cruz a 45˚ con o sin Fy. | |
Método detallado, tornillo en tracción con α = 60-90˚. Aplicar método de Bejtka y Blass (longitud perpendicular no inclinada y a como ángulo tornillo-línea perp. a plano de corte) con efecto cuerda. La capacidad combinada resulta directamente de la modificación de Johansen. | |
Método detallado, tornillos en cruz con α = 60-90˚. Idéntico a lo anterior pero sin efecto cuerda. |
El procedimiento descrito en la Tabla 1.2.4 es válido para cualquier unión solicitada exclusivamente de forma lateral o bien axial, y tornillos totalmente roscados inclinados. Para el resto de situaciones “inclinadas” la NCh1198 prescribe las verificaciones tal como se detalla a continuación
1 Tirafondos:
2 Tornillos:
3 Clavos en general:
4 Clavos de traslapo de costaneras continuas:
5 Clavos lanceros:
6 Pernos con cargas oblicuas con ángulos diferentes de 90˚. Debe descomponerse la componente lateral y axial de la fuerza comprobando que: la fuerza axial no supera la resistencia lateral suponiendo una unión a 90˚, la fuerza lateral no supera la resistencia lateral de un madero u oblicua del otro, y finalmente que la carga axial divida por el área de la arandela es inferior a la tensión admisible de compresión normal. Esta verificación es muy conservadora. Además, se deben considerar los espesores de las tablas ilustrados en la siguiente Figura 1.2.4.3.