A Treatise of Human Nature - The Original Classic Edition. Hume David

Чтение книги онлайн.

Читать онлайн книгу A Treatise of Human Nature - The Original Classic Edition - Hume David страница 12

Автор:
Серия:
Издательство:
A Treatise of Human Nature - The Original Classic Edition - Hume David

Скачать книгу

that of the composition of extension by indivisible points or atoms. How else coued any thing exist without length, without breadth, or without depth? Two different answers, I find, have been made to this argument; neither of which is in my opinion satisfactory. The first is, that the objects of geometry, those surfaces, lines and points, whose proportions and positions it examines, are mere ideas in the mind; I and not only never did, but never can exist in nature. They never did exist; for no one will pretend to draw a line or make a surface entirely conformable to the definition: They never can exist; for we may produce demonstrations from these very ideas to prove, that 22 they are impossible. But can anything be imagined more absurd and contradictory than this reasoning? Whatever can be conceived by a clear and distinct idea necessarily implies the possibility of existence; and he who pretends to prove the impossibility of its existence by any argument derived from the clear idea, in reality asserts, that we have no clear idea of it, because we have a clear idea. It is in vain to search for a contradiction in any thing that is distinctly conceived by the mind. Did it imply any contradiction, it is impossible it coued ever be conceived. There is therefore no medium betwixt allowing at least the possibility of indivisible points, and denying their idea; and it is on this latter principle, that the second answer to the foregoing argument is founded. It has been pretended [L'Art de penser.], that though it be impossible to conceive a length without any breadth, yet by an abstraction without a separation, we can consider the one without regarding the other; in the same manner as we may think of the length of the way betwixt two towns, and overlook its breadth. The length is inseparable from the breadth both in nature and in our minds; but this excludes not a partial consideration, and a distinction of reason, after the manner above explained. In refuting this answer I shall not insist on the argument, which I have already sufficiently explained, that if it be impossible for the mind to arrive at a minimum in its ideas, its capacity must be infinite, in order to comprehend the infinite number of parts, of which its idea of any extension would be composed. I shall here endeavour to find some new absurdities in this reasoning. A surface terminates a solid; a line terminates a surface; a point terminates a line; but I assert, that if the ideas of a point, line or surface were not indivisible, it is impossible we should ever conceive these terminations: For let these ideas be supposed infinitely divisible; and then let the fancy endeavour to fix itself on the idea of the last surface, line or point; it immediately finds this idea to break into parts; and upon its seizing the last of these parts, it loses its hold by a new division, and so on in infinitum, without any possibility of its arriving at a concluding idea. The number of fractions bring it no nearer the last division, than the first idea it formed. Every particle eludes the grasp by a new fraction; like quicksilver, when we endeavour to seize it. But as in fact there must be something, which terminates the idea of every finite quantity; and as this terminating idea cannot itself consist of parts or inferior ideas; otherwise it would be the last of its parts, which finished the idea, and so on; this is a clear proof, that the ideas of surfaces, lines and points admit not of any division; those of surfaces in depth; of lines in breadth and depth; and of points in any dimension. The school were so sensible of the force of this argument, that some of them maintained, that nature has mixed among those particles of matter, which are divisible in infinitum, a number of mathematical points, in order to give a termination to bodies; and others eluded the force of this reasoning by a heap of unintelligible cavils and distinctions. Both these adversaries equally yield the victory. A man who hides himself, confesses as evidently the superiority of his enemy, as another, who fairly delivers his arms. Thus it appears, that the definitions of mathematics destroy the pretended demonstrations; and that if we have the idea of indivisible points, lines and surfaces conformable to the definition, their existence is certainly possible: but if we have no such idea, it is impossible we can ever conceive the termination of any figure; without which conception there can be no geometrical demonstration. But I go farther, and maintain, that none of these demonstrations can have sufficient weight to establish such a principle, as this of infinite divisibility; and that because with regard to such minute objects, they are not properly demonstrations, being built on ideas, which are not exact, and maxims, which are not precisely true. When geometry decides anything concerning the proportions of quantity, we ought not to look for the utmost precision and exactness. None of its proofs extend so far. It takes the dimensions and proportions of figures justly; but roughly, and with some liberty. Its errors are never considerable; nor would it err at all, did it not aspire to such an absolute perfection. I first ask mathematicians, what they mean when they say one line or surface is EQUAL to, or GREATER or LESS than another? Let any of them give an answer, to whatever sect he belongs, and whether he maintains the composition of extension by indivisible points, or by quantities divisible in infinitum. This question will embarrass both of them. There are few or no mathematicians, who defend the hypothesis of indivisible points; and yet these have the readiest and justest answer to the present question. They need only reply, that lines or surfaces are equal, when the numbers of points in each are equal; and that as the proportion of the numbers varies, the proportion of the lines and surfaces is also varyed. But though this answer be just, as well as obvious; yet I may affirm, that this standard of equality is entirely useless, and that it never is from such a comparison we determine objects to be equal or unequal with respect to each other. For as the points, which enter into the composition of any line or surface, whether perceived by the sight or touch, are so minute and so confounded with each other, that it is utterly impossible for the mind to compute their number, such a computation will Never afford us a standard by which we may judge of proportions. No one will ever be able to determine by an exact numeration, that an inch has fewer points than a foot, or a foot fewer than an ell or any greater measure: for which reason we seldom or never consider this as the standard of equality or inequality. 23 As to those, who imagine, that extension is divisible in infinitum, it is impossible they can make use of this answer, or fix the equality of any line or surface by a numeration of its component parts. For since, according to their hypothesis, the least as well as greatest figures contain an infinite number of parts; and since infinite numbers, properly speaking, can neither be equal nor unequal with respect to each other; the equality or inequality of any portions of space can never depend on any proportion in the number of their parts. It is true, it may be said, that the inequality of an ell and a yard consists in the different numbers of the feet, of which they are composed; and that of a foot and a yard in the number of the inches. But as that quantity we call an inch in the one is supposed equal to what we call an inch in the other, and as it is impossible for the mind to find this equality by proceeding in infinitum with these references to inferior quantities: it is evident, that at last we must fix some standard of equality different from an enumeration of the parts. There are some [See Dr. Barrow's mathematical lectures.], who pretend, that equality is best defined by congruity, and that any two figures are equal, when upon the placing of one upon the other, all their parts correspond to and touch each other. In order to judge of this definition let us consider, that since equality is a relation, it is not, strictly speaking, a property in the figures themselves, but arises merely from the comparison, which the mind makes betwixt them. If it consists, therefore, in this imaginary application and mutual contact of parts, we must at least have a distinct notion of these parts, and must conceive their contact. Now it is plain, that in this conception we would run up these parts to the greatest minuteness, which can possibly be conceived; since the contact of large parts would never render the figures equal. But the minutest parts we can conceive are mathematical points; and consequently this standard of equality is the same with that derived from the equality of the number of points; which we have already determined to be a just but an useless standard. We must therefore look to some other quarter for a solution of the present difficulty. There are many philosophers, who refuse to assign any standard of equality, but assert, that it is sufficient to present two objects, that are equal, in order to give us a just notion of this proportion. All definitions, say they, are fruitless, without the perception of such objects; and where we perceive such objects, we no longer stand in need of any definition. To this reasoning, I entirely agree; and assert, that the only useful notion of equality, or inequality, is derived from the whole united appearance and the comparison of particular objects. It is evident, that the eye, or rather the mind is often able at one view to determine the proportions of bodies, and pronounce them equal to, or greater or less than each other, without examining or comparing the number of their minute parts. Such judgments are not only common, but in many cases certain and infallible. When the measure of a yard and that of a foot are presented,

Скачать книгу