Amusements in Mathematics - The Original Classic Edition. Dudeney Henry
Чтение книги онлайн.
Читать онлайн книгу Amusements in Mathematics - The Original Classic Edition - Dudeney Henry страница 14
117.--A FENCE PROBLEM.
The practical usefulness of puzzles is a point that we are liable to overlook. Yet, as a matter of fact, I have from time to time received quite a large number of letters from individuals who have found that the mastering of some little principle upon which a puzzle was built has proved of considerable value to them in a most unexpected way. Indeed, it may be accepted as a good maxim that a puzzle is of little real value unless, as well as being amusing and perplexing, it conceals some instructive and possibly useful feature. It is, however, very curious how these little bits of acquired knowledge dovetail into the occasional requirements of everyday life, and equally curious to what strange and mysterious uses some of our readers seem to apply them. What, for example, can be the object of Mr. Wm. Oxley, who writes to me all the way from Iowa, in wishing to ascertain the dimensions of a field that he proposes to enclose, containing just as many acres as there shall be rails in the fence?
The man wishes to fence in a perfectly square field which is to contain just as many acres as there are rails in the required fence. Each hurdle, or portion of fence, is seven rails high, and two lengths would extend one pole (161/2 ft.): that is to say, there are fourteen rails to the pole, lineal measure. Now, what must be the size of the field?
118.--CIRCLING THE SQUARES.
The puzzle is to place a different number in each of the ten squares so that the sum of the squares of any two adjacent numbers shall be equal to the sum of the squares of the two numbers diametrically opposite to them. The four numbers placed, as examples, must stand as they are. The square of 16 is 256, and the square of 2 is 4. Add these together, and the result is 260. Also--the square of 14 is 196, and the square of 8 is 64. These together also make 260. Now, in precisely the same way, B and C should be equal to G and H (the sum will not necessarily be 260), A and K to F and E, H and I to C and D, and so on, with any two adjoining squares in the circle.
All you have to do is to fill in the remaining six numbers. Fractions are not allowed, and I shall show that no number need contain more than two figures.
119.--RACKBRANE'S LITTLE LOSS.
Professor Rackbrane was spending an evening with his old friends, Mr. and Mrs. Potts, and they engaged in some game (he does not say what game) of cards. The professor lost the first game, which resulted in doubling the money that both Mr. and Mrs. Potts had laid on the table. The second game was lost by Mrs. Potts, which doubled the money then held by her husband and the professor. Curiously enough, the third game was lost by Mr. Potts, and had the Pg 22effect of doubling the money then held by his wife and the professor. It was then found that each person had exactly the same money, but the professor had lost five shillings in the course of play. Now, the professor asks, what was the sum of money with which he sat down at the table? Can you tell him?
120.--THE FARMER AND HIS SHEEP.
Farmer Longmore had a curious aptitude for arithmetic, and was known in his district as the "mathematical farmer." The new vicar was not aware of this fact when, meeting his worthy parishioner one day in the lane, he asked him in the course of a short conversation, "Now, how many sheep have you altogether?" He was therefore rather surprised at Longmore's answer, which was as follows: "You can divide my sheep into two different parts, so that the difference between the two numbers is the same as the difference between their squares. Maybe, Mr. Parson, you will like to work out the little sum for yourself."
25
Can the reader say just how many sheep the farmer had? Supposing he had possessed only twenty sheep, and he divided them into the two parts 12 and 8. Now, the difference between their squares, 144 and 64, is 80. So that will not do, for 4 and 80 are certainly not the same. If you can find numbers that work out correctly, you will know exactly how many sheep Farmer Longmore owned.
121.--HEADS OR TAILS.
Crooks, an inveterate gambler, at Goodwood recently said to a friend, "I'll bet you half the money in my pocket on the toss of a coin--heads I win, tails I lose." The coin was tossed and the money handed over. He repeated the offer again and again, each time betting half the money then in his possession. We are not told how long the game went on, or how many times the coin was tossed, but this we know, that the number of times that Crooks lost was exactly equal to the number of times that he won. Now, did he gain or lose by this little venture?
122.--THE SEE-SAW PUZZLE.
Necessity is, indeed, the mother of invention. I was amused the other day in watching a boy who wanted to play see-saw and, in his failure to find another child to share the sport with him, had been driven back upon the ingenious resort of tying a number of bricks to one end of the plank to balance his weight at the other.
As a matter of fact, he just balanced against sixteen bricks, when these were fixed to the short end of plank, but if he fixed them to
the long end of plank he only needed eleven as balance.
Now, what was that boy's weight, if a brick Pg 23weighs equal to a three-quarter brick and three-quarters of a pound?
123.--A LEGAL DIFFICULTY.
"A client of mine," said a lawyer, "was on the point of death when his wife was about to present him with a child. I drew up his will, in which he settled two-thirds of his estate upon his son (if it should happen to be a boy) and one-third on the mother. But if the child should be a girl, then two-thirds of the estate should go to the mother and one-third to the daughter. As a matter of fact, after his death twins were born--a boy and a girl. A very nice point then arose. How was the estate to be equitably divided among the three in the closest possible accordance with the spirit of the dead man's will?"
124.--A QUESTION OF DEFINITION.
"My property is exactly a mile square," said one landowner to another. "Curiously enough, mine is a square mile," was the reply.
"Then there is no difference?" Is this last statement correct?
125.--THE MINERS' HOLIDAY.
Seven coal-miners took a holiday at the seaside during a big strike. Six of the party spent exactly half a sovereign each, but Bill Harris was more extravagant. Bill spent three shillings more than the average of the party. What was the actual amount of Bill's expendi-ture?
126.--SIMPLE MULTIPLICATION.
If we number six cards 1, 2, 4, 5, 7, and 8, and arrange them on the table in this order:--
1 4 2 8 5 7
We can demonstrate that in order to multiply by 3 all that is necessary is to remove the 1 to the other end of the row, and the thing is done. The answer is 428571. Can you find a number that, when multiplied by 3 and divided by 2, the answer will be the same as if we removed the first card (which in this case is to be a 3) From the beginning of the row to the end?
127.--SIMPLE DIVISION.
26
Sometimes a very simple question in elementary arithmetic will cause a good deal of perplexity. For example, I want to divide the four numbers, 701, 1,059, 1,417, and 2,312, by the largest number possible that will leave the same remainder in every case. How am I to set to work Of course, by a laborious system of trial one can in time discover the answer, but there is quite a simple method of doing it if you can only find it.
128.--A PROBLEM IN SQUARES.
We possess