Amusements in Mathematics - The Original Classic Edition. Dudeney Henry

Чтение книги онлайн.

Читать онлайн книгу Amusements in Mathematics - The Original Classic Edition - Dudeney Henry страница 16

Amusements in Mathematics - The Original Classic Edition - Dudeney Henry

Скачать книгу

      B

      12

      x

      3

      =

      36

      C

      17

      x

      1

      =

      17

      D

      120

      x

      1/2

      =

      60

      E

      45

      x

      1/3

      =

      15

      200

      200

      The puzzle is to discover exactly how many different answers there are, it being understood that every man had something and that

       there is to be no fractional money--only doubloons in every case.

       This problem, worded somewhat differently, was propounded by Tartaglia (died 1559), and he flattered himself that he had found one solution; but a French mathematician of note (M.A. Labosne), in a recent work, says that his readers will be astonished when he assures them that there are 6,639 different correct answers to the question. Is this so? How many answers are there?

       134.--THE BANKER'S PUZZLE.

       A banker had a sporting customer who was always anxious to wager on anything. Hoping to cure him of his bad habit, he proposed as a wager that the customer would not be able to divide up the contents of a box containing only sixpences into an exact number

       28

       of equal piles of sixpences. The banker was first to put in one or more sixpences (as many as he liked); then the customer was to put in one or more (but in his case not more than a pound in value), neither knowing what the other put in. Lastly, the customer was to transfer from the banker's counter to the box as many sixpences as the banker desired him to put in. The puzzle is to find how many sixpences the banker should first put in and how many he should ask the customer to transfer, so that he may have the best chance

       of winning.

       135.--THE STONEMASON'S PROBLEM.

       A stonemason once had a large number of cubic blocks of stone in his yard, all of exactly the same size. He had some very fanciful little ways, and one of his queer notions was to keep these blocks piled in cubical heaps, no two heaps containing the same number of blocks. He had discovered for himself (a fact that is well known to mathematicians) that if he took all the blocks contained in

       any number of heaps in regular order, beginning with the single cube, he could always arrange those on the ground so as to form a perfect square. This will be clear to the reader, because one block is a square, 1 + 8 = 9 is a square, 1 + 8 + 27 = 36 is a square,

       1 + 8 + 27 + 64 = 100 is a square, and so on. In fact, the sum of any number of consecutive cubes, beginning always with 1, is in every case a square number.

       One day a gentleman entered the mason's yard and offered him a certain price if he would supply him with a consecutive number of these cubical heaps which should contain altogether a number of blocks that could be laid out to form a square, but the buyer insisted on more than three heaps and declined to take the single block because it contained a flaw. What was the smallest possible number of blocks of stone that the mason had to supply?

       136.--THE SULTAN'S ARMY.

       A certain Sultan wished to send into battle an army that could be formed into two perfect squares in twelve different ways. What is the smallest number of men of which that army could be composed? To make it clear to the novice, I will explain that if there were

       130 men, they could be formed into two squares in only two different ways--81 and 49, or 121 and 9. Of course, all the men must

       be used on every occasion.

       137.--A STUDY IN THRIFT.

       Certain numbers are called triangular, because if they are taken to represent counters or coins they may be laid out on the table so as to form triangles. The number 1 is always regarded as triangular, just as 1 is a square and a cube number. Place one counter on the table--that is, the first triangular number. Now place two more counters beneath it, and you have a triangle of three counters; therefore 3 is triangular. Next place a row of three more counters, and you have a triangle of six counters; therefore 6 is triangular. We see that every row of counters that we add, containing just one more counter than the row above it, makes a larger triangle.

       Pg 26Now, half the sum of any number and its square is always a triangular number. Thus half of 2 + 22 = 3; half of 3 + 32 = 6; half of 4 + 42 = 10; half of 5 + 52= 15; and so on. So if we want to form a triangle with 8 counters on each side we shall require half of 8 + 82, or 36 counters. This is a pretty little property of numbers. Before going further, I will here say that if the reader refers to the "Stonemason's Problem" (No. 135) he will remember that the sum of any number of consecutive cubes beginning with

Скачать книгу